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Preface

This book addresses the syllabus requirements of Units 3 and 4 of the Mathematics Specialist
course of Western Australia.

The use of CAS/graphic calculators is seamlessly integrated into the teaching and learning
process. Questions have become more explicit in terms of the required methods and
techniques. Knowledge of CAS/graphic calculator techniques empower students to appreciate
the relative efficiencies (and accuracies) of machine based techniques against traditional
pencil and paper techniques. However, the traditional pencil and paper techniques are the
ones that convey the actual mathematical concepts and processes and form the backbone of

this book. Machine based techniques are at best interpretative techniques.

The use of Hands-on-Tasks is continued in this book. These tasks allow students to
conceptualise mathematical concepts on their own without being explicitly “taught”. This
promotes relational understanding rather than factual knowledge of mathematical concepts
and ideas.

A fully worked out Selution Manual is available as a resource for teachers at
www.academictaskforce.com.au.

Dr O.T. Lee
Mathematics Department
North Lake Senior Campus
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01 Complex Numbers I

01 Complex Numbers I

1.1 Complex Numbers as Ordered Pairs

A complex number consists of two parts, the real part and the imaginary part. The
Cartesian representation,

z = (real part) + (imaginary part)i
provides some distinct algebraic advantages as observed in the preceding course.

However, rather than using the "+" sign to bring the two parts together, we could
rewrite z as;

(real part, imaginary part).
In so doing we have represented complex numbers as ordered pairs.

An Argand diagram consists of a set of x-y axes. The x-axis is labelled the Real
axis and the y-axis is labelled the Imaginary axis. A complex number x + yi can be
represented on an Argand diagram either as an ordered pair (x, y) or as a vector .

For example the complex number Im

z =4 + 4i is represented as the point 51 A

A (4, 4) or as a vector OA on an

Argand diagram.

However, points expressed in Cartesian ; ol T é Re

coordinates can be converted into
points in polar coordinates. Hence, the
complex number z =4 + 4i can also be

represented as the point A [4\/5 , g]. 5

Round brackets will be used for Cartesian coordinates while square brackets will be
used for polar coordinates.

© O.T.Lee



Mathematics Specialist Units 3 & 4

1.1.1 Complex Numbers in Polar Form

A complex number x + yi can be represented fm
as a Cartesian/ rectangular ordered pair (x, y)
or as a polar ordered pair [r, 0] . (x, ) =[r, 0]

Graphically, a complex number can be

represented as a point (x, y) or [r, 6] oras a
directed line segment joining the origin to the r Fsin 0
point (x, y) or [r, 6].

0 C
rcos 0
Consider the complex number z=x+yi.
Hence xtyi=(x,y)=[r, 0]

The modulus of z, r= \/xz + y2

The argument of z, 0, is given by tin0=2 where—n<8<n
X

The modulus of z is the polar distance r and the argument of z is the polar angle 6.

Expressing x and y in terms of » and 0:
x=rcosO and y=rsin6.
Hence z=x+yi
=rcos O+ (rsin0)i
=r{(cos 0 + i sin 0)
=rcis 0
where cis 0 is the "abbreviation" for the expression (cos 8 + i sin 8).

Hence, in summary:

z=x+1iy algebraic Cartesian/rectangular form
=rcis 0 algebraic polar form
=(x,y) ordered pair — Cartesian/rectangular form
=[r, 6] ordered pair - polar form.
where r= \/ 2 +y2
tan =2 —-T<6<7
x
In particular:
1=(1,0)=cis0=[1, 0] i=(0, D) =cis(n/2)=[1, n/2]
-1=(-1,0)=cisn=[1, n] —i=(0,-1)=cis (-n/2) =[1, -7/2]

In Cartesian/rectangular form, the conjugate of z=x +yiis Z =x — yi.
In polar form, the conjugate of z=r cis 0 is z = r cis (-0).

Re

© O.T.Lee



01 Complex Numbers I

Example 1.1

Find in exact form, the modulus and argument of — 3 +i

Hence, rewrite —~/3 + i in exact polar (cis) form.

Solution:

toPol(L—7¢37,11) o

Modulus = v3+1 =2 [2 4[%]]"'
tan 0 = —1/\3 in Quadrant 2 1 . F

= compToTrigt—7 (3)+#) =

0= 3 B ) ompTo rgz-[cos[g_gs]'ksm[%].i]"-
b

Hence, ~3 +i=2cis S?n

Example 1.2

T . . .
Convert 2 cis 1 into exact algebraic Cartesian/rectangular form:

Solution:

2cis£=2cos£+isinE
4 4 4

Lt;oRect( [2,2(n/4>7>

v mh’“

=2 +i2

Exercise 1.1

1.

For each of the following complex numbers, determine its modulus and argument giving
your answer in exact form and confirm your answer by using an appropriate routine on
your calculator.

(@) 1+3i (b) -1 —3i (¢) \3—i
(d) —2+2i (e) 4i (f) —6i
Express in algebraic polar form (¥ cis 0):
(@) 1+2i (b) =3 +4i (c) (3/5) + (4/5)i
(d) V3 +i (e) 4 () —3i
. Express in exact algebraic Cartesian form (a + bi):
(a) 2 cis (n/2) (b) 3 cis (—n/4) (c) 2 cis (51/6)
(d) [3, —n/2] (e) [V2,3n/4] ® [5, 5n/6]

. For each z given below, express z in algebraic Cartesian and algebraic polar form:

(a) z=2+3i (b) z=-1-4i (c) z=3-5i

. The complex number z has modulus » and argument 6, Find » and tan 0 if (a is real):

(@) z=a+ 2ai (b) z=1-ai (c) a—2i (d) z=1a+i

© O.T.Lee 3



Mathematics Specialist Units 3 & 4

1.2 Operations on Complex Numbers in Polar Form

1.2.1 Product and quotient of two complex numbers

o Let z,=rcis®, and z,=r,cish,.

Then:

z,z, = [rcis 0,].[r, cis 6,]
=r,ry[cos 0, +isin0 ][cos O, +isinb,]
=ryr, [cos B, cos 0, —sin 6, sin 6, + i (cos O, sin B, + sin 6, cos 8,)]
=r,¥, [cos (B, +0,)+isin (0, +6,)]
=rr,cis (0, + 6, + 2nm) { £ 2nm where required to bring the argument

into the principal domain, —n < arg < 7t}

e By a similar process:

K, . .
A b (6, -6, + 2nm) {+ 2nn where required to bring the argument
Z, h

into the domain, —7 < arg < ©}

¢ Hence, in summary:

NSO R ise,-0,).

o« 7icis O, r,cis 0, =rr,cis (0, +0,) and .
2 2 2

« cis 0, cis 0, = cis (0, +0,) and Cfsgl =cis (6, —9,)
Cis Y,

In each case the arguments need to be adjusted by adding or subtracting 2nr to
bring the arguments into the principal domain —r < argument < .

1.2.2 de Moivre's Theorem

e Considerz=cis 0.
For any positive integer n,

z = [cis G]n
= (cis 0)(cis 0)(cis 8)(cis 0).....(cis 0)(cis 0) product of » terms
=cis (n 0) {argument adjusted as

required}
This result can be extended to all rational # and is known as de Moivre's Theorem.

e Hence, for all rational #,

( |7 cis e)" = I 7| ! cis (n 0) argument adjusted as required.

o Ifz=|r| cis 0 then z7* =(lr| cise)_1 = l—rl—l cis (—90).

© O.T.Lee 4



01 Complex Numbers I

Example 1.3

Without the use of a calculator, evaluate each of the following giving answers in cis form:

(a) 4 cis (/3) X 2 cis (3n/4) (b) 2eis(=5n/6)

2cis(5m/6)
Solution:
(@) 4 cis (n/3) x 2 cis (3n/4) = 8 cis (n/3 + 3n/4)
=8 cis (131/12)
=8 cis (-117/12) [Argument has been adjusted]
(b) 4eis(5T/0) _ 5 cis (—5m/6 - 5/6)
2cis(5m/6)
=2 cis (-5n/3) =2 cis (n/3) [Arg. has been adjusted]
Example 1.4

. . _1 —_ .
Given z =2 cis (n/4), express z and Z in exact cis and rectangular form.

Solution:
7 =2 cis (WH]
=% cis (—n/4) polar form
=—42— (1-19) rectangular form
z =2 cis (-n/4) polar form
=2 (1-19) rectangular form
Example 1.5
Express in exact cis form.
6 2-2i)’
(@) (V3 +1i) (b) _(—)Z
-1+ i3 )
Solution:
6 6
(a) (N3 +1) =[2 cis (n/6)]
=64cism
(b)

@2-2i° _[2V2cis(-n/4)]
(-1+i3)*  [2cis@n/3)
B 128+/2 cis (-5m/4)
16cis(8m/3)
= 82 cis (-47n/12) = 82 cis (n/12)

© O.T.Lee 5
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Exercise 1.2 This exercise is to be completed without the use of a calculator.

1. Express in polar form:

(a) 2 cis (n/4) x 3 cis (7/3) (b) 3 cis (2n/3) % 3 cis (n/2)
(c) 4 cis (—n/3) 5>< 5 cis (—n/4) (d) 2 cis (-2n/3) 25 cis (—n/2)
(e) [2 cis (1/4)] @ [3 cis (-27/3)]
(g) [3 cis (m/3)] ™ (h) [4 cis (-5m/6)]

2. Express in polar form:
(a) {2 cis (n/3)}/{cis (n/4)} (b) {6 cis (n/4)}/{3 cis (n/3)}
(c) {8cis (TE/3)}£ {4 cis (-57/6)} (d) {cis (-2n/3)}/ {c3:'is (51/6)}
(e) 1/{cis (n/3)} ® 9/{3 cis (-n/2)}
() 4/{2 cis (5m/6)} ~ (h) 5/{2 cis (~3m/4)} ™

3. Given z, express z and zlin rectangular form:
(a) 2 cis (n/3) (b) 3 cis (-n/4) (c) 4 cis (3n/4)
(d) 5 cis (-57/6) (e) 2 cis (0) (H) 1/{2 cis (n/2)}

4. Express ea6ch of the followinsg in polar and rectangular form:
@ 1+) () (1) © @+ @ (V-
€ (1-iV3)™® (f) (2+2)~* @ (V- (h) (-1-iV3)™*

5. Express each of the following in polar and rectangular form:

~6

@ 2+2i) x(1+)* (b) ; (')‘z/ig) 3

+i —i
©) {2 cis (W3} 142 cis (w/A)} (d) {3 cis (—n/2)} /{cis (m)}
© L (-n/ YH2cis(n/3)) ( {2 cis (=5m/ 6)1*

{4cis (=3n/4)}> {2cis (m/2)}> Beis(n/ 4))>
) acis(n/3) bcis(—n/3) (h) a® cis (n/8) vz
{81cis (n/2)}\/2 {bcis (<2 /3)} {25cis (~17n/ 24)}

6. Givenw =1+ (1/N3)i and z =2 cis (n/4), express each of the following in polar and
rectangular form:

4 43 .2 .\ —4
(@) iw (b) w /i (c) iwz (d) (iz)
4 5 4 s 6 4 6k 4k +
() z/w ® iz /w) (g wz (hy w z fork eZ
7. Letw=acis a.and z = b cis [3.
(a) Find w and Z.
(b) Prove that wxz = wxz.
(c) Prove that w+z = w+z

© O.T.Lee 6



01 Complex Numbers I

1.3 Argand Diagrams

e On an Argand Diagram (plane), a complex number can either be represented by a
point or a directed line segment. The choice being determined by the context of the
investigation or the problem.

73{ Hands On Task 1.1

In this task, we will investigate the geometrical properties of complex numbers.

1.

Plot on an Argand diagram the line segment representing z = 2 cis (n/4).

(a) Plot on the same diagram the line segments representing z , iz and L

(b) Make conjectures regarding the geometrical (or transformational) relationships

between the line segment representations of z, Z , iz and z7'. For example:
“In an Argand diagram, the line segment representing z is the reflection of the line
segment representing z about the Real axis (x-axis).”

, IiZI?nd | z7! |
(d) Investigate the relationship between arg(z) and arg(Z ), arg(iz) and arg(z ).

(c) Investigate the transformational relationship between |z|and | Z

2. Repeat Question 1 for other complex numbers in polar form to determine if the

conjectures you made and relationships you investigated are true in general.

Considera=2+3iand b=2 - 2i.

(a) Plot on the same diagram the line segments representing a, b and a + b.
(b) Does a + b obey the parallelogram rule (as in vectors)?

(c) Investigate with other pairs of complex numbers.

1.3.1 Geometrical Properties of Complex Numbers

e The table below summarises the transformational relationship between z = r cis 9,

z, iz, and 27! ; z and zw; z and z/w where w = u cis a.

Modulus | Argument | Transformational Relationship
_ Reflection about the x-axis.
z r -0
iz , 0+ /2 Rotation anti-clockwise by 71/2 radians.
-1 Ur 5 Enlargement with factor 1/ then reflection about the
z X-axis.
Enlargement with factor u then rotation
zw ur 0+a . . )
anti-clockwise o radians.
Enlargement with factor 1/u then rotation
zlw rlu 0-a . )
clockwise o radians.

© O.T.Lee 7
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Example 1.6

The Argand diagram below shows the point representing the complex number z where
|z l > 1. Plot on the same diagram, the points representing the complex numbers:

@z ®i @z @ 1z

Solution:

Im
2
iz 22
@ —1 @
/,,/ \\\
/S / ‘ ) . z
y, -
- Re
-2 -f ~_ 1 2
1/z .‘ —
zZ
4
t
[»)
4

Letz=rcis Q.

(a) Therefore, zZ = r cis (—9).
Hence, the point representing z is the reflection of the point representing z about the
real axis.

(b) iz=ixz=cis (n/2) x ¥ cis O =r cis (6 + 7/2).
Hence, the vector representing iz is obtained by rotating the vector representing z,
7/2 radians anticlockwise.

2 2 2
() z =(rcis®) =r cis 26.

2 2
Hence, the point representing z has magnitude Iz l and argument 2 X arg (z).

() 1/z=(rcis 0) = (1/r) cis (~6).
Hence, the point representing 1/z has magnitude 1/ |z| and argument —arg (z).
Also, since, Izl >1, 1/|z| <1.

© O.T.Lee 8



01 Complex Numbers I

Exercise 1.3

1. Given that z =2 + 2, indicate on a single Argand diagram the points representing z and:

@@ z () z! (©) z (d) iz (e) —z @ zz
2. Giventhatw=1-iandz=1 + 1, indicate on a single Argand diagram the points:

(a) wt+z b)) w-z () 2(w+2)

(d) (w+2) (e) /(w+2) ) w+2z2) (w+z)

3. Giventhatw=1+iandz=1 — i, indicate on a single Argand diagram the points:

(a) wz (b) wiz (c) ziw (d) wz (€) w/z ) iwz
4. Letz=r cis O where 0 <0 <m/2. Find in terms of » and/or O:

(2) —z o) z () —iz @z (€) 27 6 z+%

(g) 1/z (h) ilz qQ) iz G) (i2) &) 1/zz) O z-%

5. The accompanying Argand diagram
shows the point representing the
complex number z where |z| > 1.
Plot on the same diagram, the points
representing the complex numbers:

(@ z (b)iz (c) 22 (d) 1/z z
) zz () z+% ®

N

Re

N

6. The accompanying Argand diagram Im
shows the point representing the
complex number z where |z] <1.
Plot on the same diagram, the points
representing the complex numbers:
@ z (b) 22 () =z (d) 1z
e zz () z+z

N

N

Re

N

© O.T.Lee 9



Mathematics Specialist Units 3 & 4

7. The accompanying Argand diagram

shows the points representing the
complex numbers w and z where

|w| =0.5 and|z| =1. Plot on the
same diagram, the points representing
the complex numbers:

(@ wxz (b) wz (c) ziw

(d w+z () w+z (f) w+z

. The accompanying Argand diagram
shows the points representing the
complex numbers w and z where

|lw| =0.5and|z] = 1. Plot on the
same diagram, the points representing
the complex numbers:

(@) wxz (b) wxZ (c) wxz
@ wiz () z/w () w-%7

. The accompanying Argand diagram
shows the points representing the
complex numbers w and z where

|w| =2and|z| =1. Plot on the same

diagram, the points representing the
complex numbers:

(@ wxz (b) wxz (¢) wxz
(d) wiz (e) z/w ) w+z

21
T z
®
w
[ )
: { '
-2 1 2 Re
-4
21
Im
2__
T z
®
: : :
-2 1 2 Re
o
w
-1+
2
Im
3__
2+
®
z
1__
o
: f : ! t
-3 -1 1 2 3 Re

© O.T.Lee
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01 Complex Numbers I

1.4 Locus

e In this section we will look at loci specified by constraints which involve complex
numbers. '

1.4.1 Locus involving Re(z) and Im(z)

Example 1.7

Sketch on an Argand diagram the locus of the point z = x + iy satisfying each of the following
conditions. In each case give the Cartesian equation or inequality of the locus.
(@) Re(z)=-2 (b) Im(z) =Re(z) (c) Re(z) +2Im(z) >3 (d) Re(z).Im(z) = 1.

Solution:
(a) Re(z)=-2 A ;m
Since z =x + iy, Re(z) = x.
Hence, Cartesian equation is x = -2 Re(z) = -2
5 5 Re
y 57
(b) Im(z) =Re(z) i
Since z = x + iy, Re(z) = x and Im(z) = y. 5t

Cartesian equation is y = x

{ :
5 5 Re

Im(z) = Re(z)

(c) Re(z) +2Im(z) >3 2
Locus is indicated as the shaded region. Y
Cartesian inequality is x + 2y >3. Re(z) + 2Im(z) > 3
[The line x + 2y = 3 is drawn as a dotted line.] .

_'5 5 Re

(d) Re(z).Im(z)=1 i
Cartesian equation is xy = 1

Re(z).Im(z) =1

.
*s 5 Re

© O.T.Lee 11
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1.4.2 Locus Involving the Modulus

L |z- z |=k (where z, and k are Fixed)

o |z- z, | is interpreted geometrically as "distance" between the points representing
the complex numbers z and z, .

e Hence, |z - z, |=k represents the locus of all points z that are at a constant distance
of k to the fixed point z, .

o Thatis|z— z, | = k represents a circle with centre at z, and radius k.

e To derive the Cartesian form of the locus, we let:
z=xtyiandz =a+bi.

Hence |z—zl|=k

becomes |(x—a)+(y—b)i|=k
Which gives [(x—a)P+ (@ -bP1=k
Thus (x—aP+@—-bP’ =k

This represents a circle centre (a, b) with radius k.

Example 1.8
Sketch on an Argand diagram the locus of the point z = x + yi satisfying the following
conditions: (a) |z—3+2il<2 () lz—=3+2il<2 and |z-3-il<2

Solution: m

(@) lz-3+2il<2 TR B
Rewriting  |z—(3-2i)]<2 N
Hence, the locus of z is a circular disc of radius 2 e e
with centre located at (3, -2). T

() lz-3-il<2
Rewriting  |z—(3+i)]<2
The locus is the region within the disk but not on the
circumference of the disk, of radius 2 with centre
located at (3, 1).

Hence, |z—3+2i|<2 and |z-3-il<2is
represented by the common area between the two discs.
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IL |z—z1|=|z—z2|

e This equation can be read as;
distance between z and z, = distance between z and z,.

Hence, the locus is the perpendicular bisector of the line segment joining z, to0 z,.

Example 1.9

Sketch on an Argand diagram the locus of the point z = x + yi satisfying the following
conditions:

@) lz+2-il=lz+1-2il (b) lz+2—-il2lz+1-2iland Im(z)<2.
Solution:
@) lz+2-il=lz+1-2i , )

Rewriting  |z—(=2+i)l=lz—(-1+2i)]
The locus is the perpendicular bisector of the line
joining the points (-2, 1) to (-1, 2).

w

() lz+2-ilzlz+1-2iland Im(z) <2
The locus is indicated by the shaded region.

Example 1.10
Find the Cartesian equation of the locus described by:
(a) lz—4+3il>10 (b) lz—2-3il=1z-3+3i|
Solution:
Letz=x+yi.

(2) Hence,|z—4+3il>10 = |x+yi—4+3i|>10
-4+ (@+3)i|=10

2
Cartesian equation is x—4) +(y+3) 2100

®) lz-2-3il=lz-3+3il = | x+yi-2-3il=] x+yi-3+3il
[c-2+0-3)i] = la-3+0+3)l
(x=2) +(y-3) =(x-3) +(¢+3)
Cartesian equation is 2x—12y=35
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III. Miscellaneous Types

Example 1.11
Given that a=1+i and b = 5 + 7i, sketch the locus of z, defined by:
(a) |z—a| + |z—b| = |la-b|
®) lz—al +|a-b|=]z-5]
(c) Iz+a| + |z+b| =la-b|
Solution:
@ lz—(+d] +|z=-G+7)] = 1Q+)-(E+7)] m
(6.7)
distance distance distance 51
between | 4 | between | = | between
z&(10) 2&(5,7) %)) i
&(5.7) 5 s
Hence, z must be a point on the line segment joining 5]
(1, ) to (5, 7).
®) lz—+pl+a+)-6+7)| = z-+79)] m
distance distance distance 1 * 6
between | + between = between °1
z&(-1-1) (1,1 z&(5.7)
& (5,7) —> Re

Hence, z must be a point beyond the point (1, 1) on the
line segment joining (1, 1) to (5, 7).

(c) Rewrite |z+(1+9)| +|z+G+7)| =@ +i) - (5+7i)] as:
|z (1-p| + |z-5-7)| = |1~ i) - (=5 - 7))
lz—(=1-9)| + |z=(5-T)] = @ +))- 5+ 7)]

distance distance distance
between | , | between | = between s+
z&(-1-1) 2&(-5-7) an
& (5.7) , > Re
-5 4 5
Hence, z must be a point on the line segment joining >
(-1,-1) to (-5, -7). 37
(5:7)

Note:
The distance between (1, 1) and (5, 7) is identical to the distance between (—1, —1) and (-5, —7).
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1.43 Arg(z)=0 (0is Constant)

e Forz=x+yi, with arg(z) = 6, then, tan 0 = y/x .
Rewriting, y = x tan 0.
But since (x, y) is located only in one particular quadrant, the locus is a
half-line with equation y = x tan 0, in the quadrant containing (x, y).

e Hence, arg(z) = 0 gives a half line with an end point tending to (0, 0)
inclined at angle 6 to the positive real axis.

e Similarly it can be shown that arg(z — z,) = 0 gives a half-line with an endpoint
tending to z, inclined at an angle 6 to the positive real axis.

Example 1.12

Sketch on an Argand diagram the locus of the point z = x + yi satisfying the following
conditions:

(a) arg(z)=-5n/6 (b) W6 <arg(z)<n/3and2< |zl<4 (c) arg(z+ 1)< /3

Solution:

(a) arg(z) =-5n/6
Locus of z is a half-line with end point tending to (0, 0) inclined at
an angle of =57/6 to the real axis.

old

Re
T

(b) n/6<arg(z)<sn/3and2<lz|<4

Im
The locus is indicated as the shaded region trapped between the two
half-lines inclined at angles of 7/'6 and w3 respectively, with the real
axis and the two circles centred at the origin of radii 2 and 4 . R
5 \\}:ﬂ/ 5 Re

respectively.

(c) arg(z+1)<7/3
Rewriting, arg[z — (-1 + 07)] £ /3. A /
Locus is indicated as the shaded region with boundaries, the half-

line with end-point tending to (-1, 0) inclined at an angle of 7/3 to

ol

the real axis.
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1.4.4 Locus in General

e Some loci may best be drawn after rewriting the constraints in Cartesian form.

Example 1.13

Rewrite in Cartesian form:
(a) Im[z-)/(z+i]=1 ®b)z+z=zZ.
Hence sketch the locus of z for each.

Solution:
(a) Im x+t(-Di|_, im
x+(y+1)i
Make the denominator real:

Im{x+(y—l)ixx—(y+1)z1

x+(y+D)i x-(y+1Di

In{xZ +(y2—1) N —2x z}zl O ’ )
X H+y+D) P +(p+1) al

—2x _
X +(y+1)° -
X2+ @+ 1)2=0
(x+ 1)2+(y+ 1)2=1
Therefore, the locus of z is a circle with centre at (-1, —1) and radius 1.

Hence,

(b) z+Z =zZ
Substitute z =x + yi and Z =x — yi:
(e i)+ @ = yi) = (e +y) e = yi)
, 2x2 =x +y

x —2x+y =0

-1 +y =1 s ah N
Hence, locus of z is a circle with centre (1,0) and u
radius 1.
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Exercise 1.4

1.

Indicate on separate Argand diagrams, the locus of the point z satisfying:

(2) Re(z)=5 (b) Im(z) = -3

(c) Re(z) + Im(z) =5 (d) Re(z).Im(z) =3

© [Re(Z)]2 + [Im(Z)]2 =4 () 4 Re(z) =Im(2)

(g) lz-2| =4 () lz-1-il =2

@ lz-2-3il =2 G) lz+1+2il =4

&) lz—11=[z=1-1] ()] lz+2+il =1z-2+3il
m) lz-dlz-1l =1 M l@-1-2)/z+1+4)| =1

. For each of the constraints above, determine its Cartesian form.

Given that a = 2i and b = —4i, sketch the locus of the point z such that:
@) |z—al| +|z-b|=|a-b| ® lz-al +la-bl=|2z-b]
© lz-b| +]a-bl=|z-4a

Given that a=-2 +i and b = 4 + 5i, sketch the locus of the point z such that:
@ |z-a|l +|z-b|=]a-b] ®) \z-b| + la-b| =]z-4l
© lz+al +|z-bl=1la+bp]

Given that a = -2 + 2i and b = 3 — 44, sketch the locus of the point z such that:
(a) |z—a|+|z—b|=|a—b| (b) |Z+a|+|z+b|=la—b|
(©) |z—a| + |z+b| = |a+b|

Indicate on separate Argand diagrams, the locus of the point z satisfying:

(a) arg(z)=m/S (b) arg(z)=—-n/4

(c) arg(z—1+2i)=5n/6 (d) arg(z+1-2i)=-3n/4
(e) arg(z)=n/3 (f) arg(z )=-—/4

Sketch the following regions in the Argand plane:

(@ 2< |zl <5 ®) 2<|z-5+5i] <4

©) lz+il <|z-4il @ lz+1=3il <|z+2+4il
(e) /4 <arg(z) <57n/6 () arg(z) <-m/3

(g) 0<arg(z+i)<2n/3 (h) 2n/3 <arg(z—1+1i)

8. Sketch the following regions in the Argand plane:

(a) |z| <3 and Re(z) > -2 () lz—1] <2 and Im(z) < 1

(¢) |zl <5 and n/6 < arg(z) < /2 (d) 2< |zl <5 and -57/6 < arg(z) < /6
() lz—1-il <2 and |z-1-i] <|z-1+il

@® lz+1+il < lz—1-il and arg(z) < -n/4

9. Determine the Cartesian form for each of the following constraints and hence sketch

the locus of z (k is a constant):

(@) Im(z+z )=0 (6) Re[z - (1/2)] =0

(©) Tm[z -1+ (4/2)] =0 d) +2)(z-2)=ki

(€) z=k(2+5i)+3i @ z—i=kzi

() Re@) = |z (h) Im(2) = |z|

G lz-il =2]z+1] G) lz=1+il =3|z+1-2i]
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10. Given that lz -1+ | < 1, find the minimum and maximum values for :

@ lz|  (b) arg(z).

11. Given that |z~ 3 —4i| <5, find:
(a) the largest value for p and the smallest value for g such that p < |z]< q
(b) the largest value for a and the smallest value for b such that a < arg(z) < b.

12. Giventhat |z—i| <1 and 0 < arg(z) < /4, find:
(a) the largest value for p and the smallest value for g such that p < |z|< q
(b) the largest value for a and the smallest value for 4 such that a < arg(z) < b.

13. Giventhat |z—1+i| <2 and Re(z) > 1, find the minimum and maximum values for :
@ |zl @) arg).

14. Define the locus of z in each of the following Argand diagrams:

() (b)
Im
107
51
} } + B Re
-10 -5 5 10
5+
-0 ¢
(c) (d)
Im
105
Im
2 o
5 =
1 | o
} } = B Re
-10 -5 5 . 10 ; Re
10
-5+
14
-10 v 2y
(e) ®
Im
3 fA\3
*—— 9
— B Re
5 5 10
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02 Complex Numbers 11

2.1 The Fundamental Theorem of Algebra

e Any polynomial of degree n e Z* will have exactly n complex roots.
The proof of this theorem is beyond the scope of this book.

e That is, a polynomial of degree 10 will have exactly 10 complex roots,
some of which may be wholly real.

2.1.1 Roots of Complex Numbers

¢ Consider the equation Z=x+ yi where n is a positive integer.
By the Fundamental Theorem of Algebra, this equation will yield » complex
solutions for z. These solutions are called the n-th roots for z.

e A procedure of determining the n-th root of a complex number is demonstrated in
the examples that follow.

Example 2.1

2
Without the use of a calculator, solve, z =i giving your answers in Cartesian form.

Solution:
. . 2 i
Rewriting 7 in cis form: z =cis (E + 2knj keZ
1
[T 2
Hence: z= [czs [—2— + 2knﬂ
) - (7w 2km
Using de Moivre’s Theorem: z=cis 7 +T keZ

By the Fundamental Theorem of Algebra, the equation will have two roots.
_V2 V2,

2 2

Fork=1: z= cis £+—2—E = cis S—R = cis —3—75)
4 2 4 4

Fork=0: z= cis(ﬁj
4

Notes:
o The complex number i is written in cis form with a generalised argument.
There are an infinite number of arguments that correspond to the complex number i.
e Regardless of how many integer values of k are used, there will only be at most two distinct roots.
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Example 2.2

_ 6 .. I
Without the use of a calculator, solve, z =—1 giving your answers in cis form.
Plot the roots on an Argand Plane, and comment on their relative locations.

Solution:

6
Rewriting in cis form: z =cis (x + 2km) keZ

z= |:czs TC+2kﬂZ):| %

T
z=cis| —
s

Hence:

Using de Moivre’s Theorem:

Hence, the roots are:

m
z,=cis Ej i
6
(2w e
, = cis 6+6 = cis Ej
zz=cis%ﬂ6£=cis5?7T . x 557:
2 3 3
(m 6rn (7w . 5n
Z3 = Cis g ? = CI8 ? = ClS —?
_ . (m &) . (9m) (=
Z4 = Cis 'g‘*‘? = Cl8 ? = CIs —'5 2l
fm 10m) (1l . ( =
s=Cis| —+—— | = cis| — | = cis| ——
6 6 6 6

e The six roots of —1 are located at the vertices of a regular hexagon
inscribed within a circle centred at (0, 0) of radius 1.
e The roots are separated from each other by angles of constant size,

C . ] . 2n .
which in this case is ? = g radians.

Notes:

® Note that the first root is determined by applying de Moivre’s Theorem
to the principal argument of —1 in cis _form.

2r
¢ The subsequent roots are separated from each other by an angle of ?

2
The angular separation between the roots correspond to — where n is the number of roots.
n

e Treating the roots as vectors, clearlyzy +z; +z, + z3 + z4 +z5 = 0.
That is, the sum of all the roots is always zero.
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6
Alternative Solutiontoz =-1 :
Rewrite —1 in cis form: —1l=cism

. : : (m
Using de Moivre’s Theorem, one rootis  z = cis (E)

. . 2n .
As there are six roots and the arguments of these roots differ by 3 radians.

The other roots are: z, = cis £+2_7c = cis i
6 6 2
(n 4w (5w
z,=cis| —+— | = cis| —
6 6 6
(m 6n (7n . 5
z, = cis| —+— | = cis| — | = cis| ——
6 6 6 6
(m 8m (97 . T
z,=cis| —+— | = cis| — | = cis| ——
6 6 6 2
frm 10m (1w , Y4
z,=cis| —+— | = cis| — | = cis| ——
6 6 6 6

2.1.2 Formalising the method to determine the n-th roots of a number.

n
e Tosolvez =x+yi:

o Let x+yi=rcis © where 0 is the principal argument of x + yi.

« Rewrite equation as Z =rcis (6 + 2kn)
+ Then, using de Moivre’s Theorem,
1
the nth roots are given by z, =r"cis (9 + Zk—n] keZ
n n

e Alternatively:
1

» Firstrootis »" cis —.
n

. 2n
« Difference between the arguments of the roots a = —.
n

1
« The roots are: z =r" cis (9+y—€£) keZ
n n n

o The n-th roots of z are located at the vertices of a regular inscribed n-gon.

1
The circumscribing circle is centred at (0, 0) and has radius equal to I z IZ .

The arguments of the roots differ by 2n radians.
n

e The sum of all the n-th roots is always zero.
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Exercise 2.1

1.

10.

Without the use of a calculator, solve each of the following equations, giving your
answers in cis form. In each case plot the roots on an Argand plane.

3 3 4
(@ z =-1 (b) z =-8 () z =4

5 5 6
dz =1 (e) z =32 ) z =64
Solve each of the following equations, giving your answers in rectangular form. In each
case glot the roots on an Argand plane. )

5

(@ z =i (b) z =—i )z =1+

5 6 3
(d) z =1+3i (€ z +1+V3i=0 () 8z +27=0

2 2
If w, z and 1 are the cube roots of 1, show that w=2z and w =2z. Plot these roots on an
Argand plane, and show using the parallelogram rule of addition, that 1 + w +z=0.

6
Solve the equationz =1.

2 3 4 5
Show that the roots of the equation may be written as 1, w,w ,w , w , and w , where

w is the root with the smallest positive argument.
2 3 4 5
Verifythat 1+ w+w +w +w +w =0.

w is a complex number represented on an Argand diagram as a point on a circle centred at
2 3
(0, 0) with radius 1. Given that arg(w) = 27/3, find in rectangular form, w, w and w .

State the equation for which these numbers are its roots.

On an Argand diagram, the roots of an equation are represented as the five vertices of an
inscribed regular pentagon, the circle having centre (0, 0). If one vertex is the point
(=3, 0), find the roots of the equation in polar form and the equation.

On an Argand diagram, the roots of an equation are represented as the six vertices of an
inscribed regular hexagon, the circle having centre (0, 0). If one vertex is the point
(1, V3), find the roots of the equation in polar form and the equation.

On an Argand diagram, the roots of an equation are represented as the eight vertices of an
inscribed regular octagon, the circle having centre (0, 0). If one vertex is the point

(1, -1), find the roots of the equation in cis form and the equation.

Find the least positive integer 7, so that cis (311/5) is a solution to the equation

zn = —1. For this value of », find all solutions to zn + 1 =0, in cis form.

Without using your CAS/Graphic Calculator, solve, giving all roots in exact form:
3 2 2

@ @ - +tz+1)=0 b) z —1)z +4)=0
3 2 3 3

(©) (z +i)z +z+1)=0 d) (z -z +8)=0
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2.2 Complex Numbers and Trigonometry

e Representing complex numbers in polar form invariably leads to a link between
complex numbers and trigonometry. As it often happens in mathematics, transfer
occurs between the different branches of mathematics, and in this case, we can
transfer the techniques developed in complex numbers to work out problems in
trigonometry.

e Letz=cos 0 +isin6.
n n
Hence, z =(cos 6 +isin 0)

n
z =cosnb +isinnd I

Similarly, —1—n =z " =(cos O +isinB)™"

z
= cos (—n0) + i sin (—nB)
1 = cos nB — i sin 1O II
Zl’l
[+1I; z”+—1—=2cosn9 = cos 10 = L z”+—1—
z" 2 z"
I-11; z" _L = 2j sin n0 = sinn = i.(z" —Lj
Zn 2i Zn

¢ By using the Binomial Theorem and the above relationships we can rework some
common trigonometric identities.

Example 2.3 Expressing powers of sine/cosine as multiple angles.

4
4
Find the expansion for (z +—1—j . Hence, prove that cos 6= % [ cos40 + 4 cos 20 + 3].
z

Solution:
4 2 3 4
4 3 2
(eg) e (D)oo (5] o [5) 5]
zZ zZ zZ z
= (24+L4) +4(22+L2j +6
z z

But (z+l) =2cos 0, (z4+—%j =2 cos 40 and (zz+
\ z z

N

2

LJ =2 cos 20.
z

4
Hence [2cos 8] =2 cos 40 +4[2cos28]+6
4
cos 6= %[cos49+4cos 20 + 3]
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Example 2.4  Expressing sine/cosine of multiple angles in terms of powers of sine/cosine

5
(a) Expand (cos 0 +isin 0) .
(b) By using de Moivre's Theorem and by equating real and imaginary parts show that
5 3

cos 50=16cos 8 —20cos 6 +5cos O
and sin 56 =16 sin59 -20 sin39 + 5 sin 6.
(c) Hence, solve l6x5 — 20x3 + 5x — 1 =0, giving all roots in trigonometric form.
Solution:
(a) (cos 6 +isin 9)5 = cos5 6+5 cos4 0 (isin0)+ 10 cos3 0 (i sin 9)2 + 10 cos2 0(i sin E))3
+5cos 0 (z sin 9)4 + (i sin 6)5
= COS 9— 10cos39 sin 6+5cosesm 0
+ i[5 cos 9s1n9—10 cos Gsm 9+sin59] [1]

(b) Using de Moivre's Theorem:

5
(cos 6 +isin®) =cos 50 +isin 50 [2]
Equating the real parts in [1] and [2]:

5
cos 560 =Re[(cos 6 + i sin 6) ]

5 3 2 4
=cos 6—10cos Osin 6+5cosOsin 0

5 3 2 2 2
=cos 6 —-10cos B (1 —cos 0)+5cosB(1—cos 0)

5 3

=16cos 0—-20cos O+5cosH

Similarly:
5
sin 50 = Im[(cos 6 + i sin ) ]
4 2 3 5
=5cos OsinB®—10cos Osin B+sin O
5 3
=16sin 6 -20sin O6+5sin6
) ) 5 3
(c) Rewrite equation as l6x —20x +5x=1 [3]
Substitute x = sin 0,
5 3
[3] becomes 16sin 6 -20sin 6 +5sin0=1 [4]
5 3
But from part (b) 16 sin 6 — 20 sin 6 + 5 sin 0 = sin(50).
Hence, [4] becomes sin(50) =1
Therefore 50 = /2, 51/2, 9n/2, 137/2, 17w/2

0 =n/10, n/2, 9n/10, 137/10, 177/10

5 3
Hence, roots of equation 16x —20x + 5x—1=0 are:
x = sin (1/10), sin (n/2), sin (97/10), sin (137/10) and sin (177/10)
= sin (n/10), sin (1/2), sin (137/10)

Note:
e Inpart (c), the roots of the polynomial equation 16x° —20x’ + 5x — 1 = 0 are expressed in
trigonometric form. Alternatively, if we had substituted x = cos 0, the solutions would be
cos(0), cos(27/5) and cos(47/5).
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Exercise 2.2

4
1. Find the expansion for (z —lj .
z

: . g e 1 1 .
Use this expansion and the identities z” +— = 2 cos n6 and z" -— = 2i sin nO
z z

4
to prove that sin 0= %[ cos 46 — 4 cos 20 + 3].

2. Use either of (or both) the identities z” +Ln =2 cos n0 and z” —Ln = 2i sin n0 and
z z
de Moivre's Theorem to prove the following:
(a) sin5 0 = [sin 56 — 5 sin 30 + 10 sinB]/16
(b) sin6 0 =—[cos 60 — 6 cos 40 + 15 cos 20 — 10]/32
(c) sin29 cos39 =[2 cos 6 — cos 30 — cos 50]/16
(d) sin 50 + sin O = 2sin 36 cos 20
(e) cos 56 + cos 38 =2cos 46 cosO

3
3. Use de Moivre’s Theorem to prove that sin 30 =—4 sin 8 +3sin 0.

3
Hence, use this result to solve —4x + 3x =1, giving the roots in trigonometric form.

3
4. Use de Moivre’s Theorem to prove that cos 36 =4 cos 6 —3cos 6.

3
Hence, use this result to solve 8x — 6x — 1 =0, giving the roots in trigonometric form.

5. Use de Moivre’s Theorem to express cos 60 in terms of powers of cos 0.
Hence, use your result to solve, giving answers in trigonometric form:

6 4 2 3 2
(a) 64x —96x +36x —2=0 (b) 64x —96x +36x—-2=0

6. (a) Use de Moivre’s Theorem to express cos 50 in terms of cos 6.

4 3 2
(b) Show that cos 56 — 1 =(cos 6 — 1)(16 cos 6 +acos 8+ bcos 8+ ccosd+d),
giving the values of a, b, c and d.

4 3 2
(c¢) For the values of g, b, ¢ and d in part (b), solve 16t +at +bt +ct+d=0,
giving all roots in trigonometric form.
. z-z71
7. If z=cis 6 verify that tan0= —
i(z+z )
Use this result to prove that:
1-tan’ 0
1+tan” 0
2tan @

1+tanZ 0

(a) cos20 =

(b) sin26 =
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2.3 Complex Numbers in Exponential Form

o FEuler’s identity states that €™ = cos x +isin x.
It allows complex numbers to be expressed in exponential form.

72 .
‘ | %’ Hands On Task 2.2

In this task, we will investigate the use of the Maclaurin's expansion to develop

Euler’s identity €™ = cos x + i sin x.

The Maclaurin's series expansion for f(x) is given by

*

1@=r @+ ©x+ L0 L Opy  TTOy

3! r!
whererl =rx (r—1)x(r—-2)x(r—-3)x....x3x2x1,
7
1. Write the series expansion for each of the following up to and including the term in x .

(@) f(x)=ée* (b) f(x)=sinx (c) f(x)=cosx

2. The Maclaurin's series expansion is valid only under certain conditions. We will now
extend its validity to complex numbers.

Use the series expansion for e* to write the series expansion for e”.

Hence, use the expansions for sin x and cos x to express ¢” in terms of cos x and sin x.

2.3.1 Working with Complex Numbers in Exponential Form

e Hands On Task 2.2 investigated a procedure to develop Euler’s identity:
™ =cosx +isinx.

From this, we can write, r ¢ =r (cos x +isinx)=rcis x .

e We can now express complex numbers in the following ways:

z=x+yi Rectangular/Cartesian form
=rcis© Polar form
= rel® Exponential form

where x=rcos® and y=rsin 0.

© O.T.Lee 26



02 Complex Numbers 11

o Ifz=rcis®= reie,then zZ =rcis(-0)=re

o Ifw=rpe

. n
o If,z=re® thenz = (re

)

4 j j W F ila—
1% and z = rze’B,thenwz= nré (@+B) ng ¥ = h ioe-PB)
z r
2

ie)n = N einG.

The identities in Section 2.2 can now be expanded to:

. cos n = l[z”+i] = l(ei”9+ 'leJ
2 g 2 o

.« sinnd= —}—(z”——l—) = i{eine— .le}
2i Z}’l 2i eln

These two identities allow us to express cos #6 and sin 76 in exponential form!

Example 2.5

Express in exact exponential form: (a) z=-1 (b) z=-1+i

Solution:

(@) z=-1=cist=¢€"

compToPol(-1+%2 A
3n n-3-4
. 1
(b) z=-1+i=+2 cis Bn/d)=+2¢ 4 L V2e 4
Note:
o Euler's Identity €™ = -1, links the four concept numbers in the development of Mathematics;
1, meandi= 1/(—1).
o Remember that your Mathematics Teacher is number —ei .
Example 2.6
: ~i % 1+ L
Express in exact rectangular form: (a) e 4 (b) e 3
Solution:
i D
(a) e 4 =cis(—m/4)=Z(1-i)
2 1442 =
compToTrig(e 3,
i3 s
1+l£ T C'[COS §]+sm[§] P]
(b) e 3 = el X el 3 tExpand(e-[cos[%]+sin[§]-i])
3 -3
. 1,43 (1e2t).
=ecis(n/3)=e ——+z£ h 2 2
2 2
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Example 2.7

Ifw=¢€" andz= 2ei§, find in the polar form: (a) wz (b) w/z (c) wxz

Solution:
. i.E_
(a) wz=¢e" x 2¢e 3
;4An
=2 cis (4—nj
3
=2 cis(—z—nj
3
(b) Wiz = —
2¢' 3
2
1 .(2=n
= —cis| —
2 3
. _iﬂ_
(@) wxz =e '"x2e 3
_j4n
i =2 cis (—4—nj
! 3
=2 cis (Z—RJ
3
Example 2.8

Use the exponential form of the complex number to prove that cis (a0 + B) = cis o cis B.
Solution:

Let /% = cis o and &P = cis .

Clearly, &% x &P = cis o x cis .
But, &% x eiB = oot B).

Since, &' (**B) = cis (a.+ B), hence, cis (0. + B) = cis o cis B

Note:
e The relationship cis (o + ) = cis acis  was proved earlier in Section 1.2 of Chapter 1.
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Example 2.9
Use the relationship sin #0 = L "0 _'L and cos 70 = 1 N0 4 '1
2i "0 2 N0
4

to prove that 8 sin 6 =cos 40 — 4 cos 26 + 3.
Solution:

Clearly sin0= 4| 0__L |

2i é )
Hence,

: 4
sm 6= [—( - }
2i
4 g ’ ’
B PIRPRETS SUAS MY
e € ¢ ¢
(¢ g )]
e e

[2c0s46—4x2c0s20 + 6 |

= ==

4
Therefore, 8 sin 6 =cos 40 —4 cos 20 + 3

Note:
o This proof was required in Question 1 of Exercise 2.2, using the cis form of the complex number.
Example 2.10
Solve ¢**% = -3 where x and y are real numbers. Hence, determine In (-3).
Solution:
ex+yi =3 = x+yz —3x (_1)
ex+yz =eln3 ><el(2k+1)11: ke
ex+yi — eln3+i(2k+1)1t
Comparing real and imaginary parts:
=1In3
=2k+ D kel
Therefore n3+ikehm — _3

Expressed in logarithmic form:
In(=3)=n3+2k+)n keZ
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Exercise 2.3

1.

10.

11.

iz _ii‘E ’ iz
. Express in exact polar form: (a) e® (b) e ¢ (¢ e s (d e 3

Express in exact exponential form:
(a) z=2cis(n) (b) z=5cis(3n/4) (c) z=3cis (—n/6) (d) z=12 cis (-2n/3)

Express in exact exponential form:
(@ z=1 O® z=i ()z=1+V3i (@) z=-2-2i () z=3-V3i

24+ L

. . ; 21 ; 3n 1-i & 2 : W
Express in exact Cartesian form: (a) e 3 (b) e 4 (c) e '3 d e e

. Ifw=-1+iand z=13 — i, find in exact exponential form:

@22 ®w ©w @z (€ ww (B # (g wz (h) wz

Ifw=2+2iandz=3 -3, find in exact exponential form:

@ 72 ) 22 (c)% <d)U © = (f)(j

1 z
w w

T i2n

-1 e 3 :
. Iw=+2e 2 andz= > find in the exact polar form:

(@) wz (b) g ) wxz (d) wxz (&)

SIS

Ifw=p ¢'* and z= v e'P, prove that: (a) wz= rr, EACaD (b) L =4 e
z r
Use the exponential form of the complex number to prove that cis (oo — ) = cz.sg .
cis

. n
Use Euler’s formula e = cos x + i sin x to prove de Moivre’s Theorem (cis x) = cis nx.

Use the relationship sin #6 = %[eine —ﬁ} and cos n0 = %(ei" o+ ei:’ GJ
to prove that:

(@ 8 cos49 =c0s40 +4 cos 20 + 3

(b) 32 cos32 0 sin: 0 =cos 606 —2 cos 40 — cos 20 + 2

(c) 64 cos Osin B=cos70—cos 50 —3 cos30+3cosb

4
(d) 16 cos OsinB=sin 50+ 3 sin 36 + 2 sin O
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12. Solve * ™7 =k where x and y are real numbers for :
(@) k=-1 (b) k=-2 (c) k=2 (d) k=i *e) k=1+i

13. Without the use of a graphic/CAS calculator, solve for a and b given that a and b are real.
(@) In(=1)=a+ bi, (b) In(-2)=a+bi (¢) In(-3)=a+bi.

2
*14. Given In (—k ) = a + bi, solve for a and b given that k, a and b are real.

il il
15. Giventhatz= 2e 4 , sketch on an Argand diagram the graph ofz = 2e 4 .
Hence, or otherwise, find the maximum value of Re(z) and the minimum value of Im(z).

Tt Tt
1 —i— -1-i—

16. Giventhatz= e 3 , sketch on an Argand diagram the graphofz= e 3.
Hence, or otherwise, find the minimum value of Re(z) and the maximum value of Im(z).

17. Given that z is a complex number, prove that ¢ ¥ 2™ = ¢?.

z

18. Given that z is a complex number, prove that (¢”)" = ¢"? where n is an integer.

19. Given that z is a complex number, prove that e* = e .

eW

z w

and — = e
eZ

+ -z

20. Given that w and z are complex numbers, prove that e” &* = "
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03 The Factor and Remainder Theorems

3.1 The Factor Theorem

o The degree of a polynomial in x is determined by the power of its highest x term.
5 4

For example, x —3x + 5 is a polynomial of degree 5.

e Consider the polynomial f(x).
o If (k) =0, then (x — k) is a linear factor of the polynomial f(x).
e Conversely if (x — k) is a factor of the polynomial f(x) then f(k)=0.

e x =kis called a root or zero of the polynomial f(x) if f(k)=0.

e By systematically “guessing” the zeros, the factor theorem enables us to factorise
polynomials of any degree.

Example 3.1

4 3 2
The polynomial f(x) =3x + 7x +ax + bx — 2 is exactly divisible by (x — 1)(x + 2).
Without the use of a calculator:
(a) find the values of @ and b. (b) express the polynomial as product of its linear factors.

Solution:
(a) Since (x - 1) and (x + 2) are factors of f(x)
f(M)=0and f(2)=0
f(H=0 = at+b=-8 @
f(=2)=0 = 2a—-b=5 1))

Solving (I) and (II) simultaneously:
a=-1 and b=-7.

4 3 2
Write 3x +7x —x =Tx-2=(x-1(x+2)0)
2
=(x_+x-2) ()
) ) 4 32 2 2
By inspection 3x +7x —x =Tx-2=(x +x-2)(3x +4x+1)

=x—-DEx+2)x+DHBx+1)

Notes:
e O(x) is polynomial of degree 2 and is determined using a method of inspection first introduced in
Section 3.3 of Chapter 3 of the book Mathematics Methods Units 1 & 2.

o Alternatively, a method involving a process of polynomial division may be used. See Example 3.6.
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Example 3.2

4 3 2
Without the use of a calculator, factorise completely f(x)=2x —5x —24x —7x+ 10.

Solution:

The integer zeros of f(x) must be factors of 10.

Tryx=1 S)#0
Tryx=-1 fH=0 = (x+1)is a factor.
Tryx=2 f2)#0
Tryx=-2 f(=2)=0 = (x+2)is a factor.
) 4 3 2
Rewrite 2x —5x —24x —Tx+10=(x+ 1)(x+2) O()
2
=(x +3x+2) Q(x)
2
By inspection: 2x - 5x — 24x -Tx+10=(x +3x+ 2)(2x - 11x+5)
=(x+ Dx+2)2x-)(x-5)
tactomzz4—513—2412—7x+1a H
(x42)=(x41)-(x=5)-(2e-1)
Example 3.3

5 4 3 2
Without the use of a calculator, solve x +x —6x —2x +4x=0.

Solution:

5 4 3 2 4 3 2
x +x —6x —2x +t4x=x(x +x —6x —2x+4)

4 3 2

Let f(x)=x +x —6x —2x+4
f(=1)=0 = (x+1)isafactor.
f(2)=0 :>3(x 22) is a factor.

Hence, x +x —6x —2x+4= (x+1)(x 2) O(x)
= (x2 -x-2) ng)
=(x —x-2)(x ;2x—2)
=x+DHx-2)(x +2x-2)

Hence equation becomes:
x(x+ D(x—-2) (x +2x-2)=0

2
L e—_r00 2% (—2)2 —4(1)(-2)

=_1,0,2,-1% 3
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Exercise 3.1 This Exercise is to be completed without the use of a calculator.

1.

10.

32
If(2x—-1)3x—1)isafactorofax +x +bx+1, find g and b.

2 3 2
If 2x — k) is afactor of 4x +40x +37x+9, find k.

4 3 2 2
. Giventhat2x —8x +11lx —20x+15=(x—-1)(x-3)ax +bx+c), find g, b and c.

4 3 2 2 2
. Given that -3x +12x —5x —28x+28=(x—-2) (ax +bx+c),finda, bandc.

Factorise each of the following.

4 3 2 4 3 2
(a) x +10x +35x +50x+24 (b) x +6x +13x +12x+4
4 3 2 4 3 2
() x -x —7x +13x-6 (d 4x —4x —9x +x+2
3 4 3 2
() 2x —x +x —x-1 ) x =3x +6x —12x+8

5 4 3 2 2
. Given thatx —2x +2x —4x —3x+ 6 is exactly divisible by x + 3,

find the remaining real factors of the polynomial.

Sketch each of the following curves. Indicate clearly all intercepts.

(a)y=x3+3x2—24x+28 (b)y=(x2—4x+4)(x2+2x—3)
(c)y=2x4—3x3—4x2+3x+2 (d)y=x4—13x2+36

Solva for reéal valugs of x: . \

(a) x +7x +18x +20x+8=0 (b) x =2x +2x-1=0

(c) 3x5—7x —x3+7x -2x=0 (d) 6x5—x4—7x3+x2+x=0
(e)x—2x —5x +8x+4=0 ® x4—x3—x2—x—2=0

3 2
Solve fc;’r all rzeal values of x, 6x —x — 5x+ 2 =0. Hence, solve for all real values of x:
6 4 2
(a) 48x —4x —10x+2=0 (b) 6x —x ~5x +2=0
3 2 3 2
(c) 6x —x +5x+2=0 (d) 2x —5x —x+6=0

4 3 2
Solve for all real values of x, 2x —x —17x + 16x+ 12 =0. Hence, solve for all real
values of x:

4 3 2 8 6 4 2

(a 2x +x —17x —16x+12=0 (b) 2x —x - 17x +16x +12=0
4 3 2 4 3 2

(c) 12x +16x —17x —x+2=0 (d) 12x —16x —17x +x+2=0
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3.2 The Remainder Theorem
3.2.1 Quotients and Remainders

e Consider the polynomial f(x) of degree .
If f(x)is divided by a linear expression (ax + b) then we can write:

S ()= (ax+b) Ox) + R

e Q(x) is called the quotient and R is called the remainder.
» The quotient Q(x) is also a polynomial in x but of degree (n — 1).
o The remainder R is a constant.

¢ On the other hand if the polynomial f(x) of degree » is divided by a quadratic

expression (ax + bx + c¢), then we write:

F@)=(ax +bx+c) O@) +R().

o The quotient Q(x) is now a polynomial of degree (n — 2).
e The remainder R(x) is a polynomial of degree one (a linear expression).

7'l
g ﬁ- Hands On Task 3.1

In this task, we will explore a technique for dividing polynomials, to obtain the remainder.

2
1. Consider the polynomial x +2x+ 7.
2
If the polynomial is divided by (x — 1), then x +2x+7=(x—-1) O(x) +R.
2

By substituting an appropriate value for x into x +2x+7=(x— 1) O(x) + R, find R.
What value of x did you substitute? Why?

3 2
2. Consider the polynomial 2x +2x —3x + 5. If the polynomial is divided by (x + 1),
3 2
then 2x +2x —3x+5=(x+ 1) Q(x) + R. By substituting an appropriate value for x into
3 2
2x +2x 3x+5=(x+1)Q(x)+R, find R

3. For each of the given polynomials and divisors, rewrite the polynomial in terms of its
divisor, quotient and remainder. By substituting an appropriate value of x into the
statement you have written, find the remainder in each case

2
(@ x +4x-9; x+2 (b) x —4x —7x+5 x-2
3 2
(¢) -4x —-5x +x-10; 1+x (d) 2x —3x +5x - 10x-1; 2-x

4. Review what you have done in the first three questions. Write down an algorithm
(procedure) for determining the remainder when a polynomial f(x) is divided by a linear
expression (ax + b).
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3.2.2 The Remainder Theorem

e When the polynomial f(x) is divided by (ax — b), its remainder is given by f (%)

o When f(x) is divided by (ax — b), let the quotient be O(x)
and the remainder be R. The remainder R must be a constant.

o Clearly: f(x)=(ax-b) O(x) + R
1(8)=[o(5) ¢ 0w+
=R

« Hence, the remainder R= f (%) .

o Clearly if the remainder is 0, then x = b is a zero and

a
(ax — b) is a factor .

o The remainder theorem provides a simple and efficient algorithm for determining
the remainder when the divisor is a /inear factor.

o When the quotient is required or when the divisor is a non-linear polynomial, a
method whereby coefficients of terms are compared may be used. Alternatively, a
procedure called polynomial division may be used. See Example 3.6.

Example3 34

2
When ax + bx —3x+ 1 is divided by x + 1 and 2x — 1, the remainders are 2 and 1
respectively. Find the values of @ and b.

Solution:
3 2
Let f)=ax +bx —3x+1
Clearly f(=1)=2 = —at+b=-2
and f(%) = =  a+2b=12
Hence a=? and b=2.
Example 3.5

3 2
Whenx +ax + bx -1 is divided by (x + 1)(x — 1), the remainder is (2x + 1).
Find the values of a and b.

Solution:
3 2
Clearly x tax +bx—-1=(x+Dx~-1)0x)+(2x+1)
Substitute x = —1 a-b=1
Substitute x = 1 a+b=3
Hence a=2 and b=1.
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Example 3.6

Without the use of a calculator, find the quotient and remainder when the polynomial

4 3 2
x +3x —2x +5x—1isdividedbyx-1.

x

Y322 +5-1 |

-1
x3+4-x2+2-x+i+?
x-1

Solution:
4 3 2
Let fx)=x +3x —2x +5x-1
By the Remainder Theorem: The remainderis f(1)=6
4 3 2 3 2
Clearly x +3x =2x +5x—-1=(x—-1)(ax +bx +tcx+d)+6
Comparing coefficients and constant terms:
4
Comparing the x terms a=1
3
Comparing the x terms b-a=3 = b=4
2
Comparing the x terms c-b=-2 = c¢c=2
Comparing the constant terms —-d+6=-1 = d=7
.3 2
Hence, quotientis x +4x +2x+7 propFrac(
and the remainder is 6.
o

Alternative Solution:

Using the method of polynomial division.

x3 +4x2+2x+7
x—l)x4+ 3x3—2x2+ 5x—1

x4 —x3

4x3 —2x% +5x—1

453 —4x?

2x% +5x—1
2x% —2x

Tx—1

Tx-1

6

3 2
Hence, quotient is x +4x + 2x + 7 and the remainder is 6.
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Example 3.7

Without the use of a calculator, find the quotient and remainder when the polynomial

4 32 _ 2
2x =3x +x —-2x+1isdividedbyx +x+1.

Solution:
Clearly the remainder is a polynomial of degree 1.
4 2

Let 2x —3x +x =2x+1=(x +x+1)(ax +bx+c)+(dx+e)
Comparing coefficients and constant terms:

4
Comparing the x terms a=2

3
Comparing the x terms b+a=-3 = b=-5

2
Comparing the x terms ctb+ta=1 = c=4
Comparing the x terms ctb+d=-2 = d=-1
Comparing the constant terms cte=1 = e=-3

. . 2 4 F
Hence, quotient is 2x —5x +4 oropFrac( 2% —3123-*12—21-*1
and the remainder is —x — 3. atatl
2% 2Bt 2 g
x4kl x Ll
o

Alternative Solution:

Using the method of polynomial division.

2x% —5x+4
x2+x+1 2x4— 3x3+x2— 2x+1

2x4 + 2x3 + 2x2

—5x° —x% —2x+1

—5x3 _5x% 5%
4x% —3x+1
4x% +dx+4

—-x-3

2
Hence, quotient is 2x — 5x + 4 and the remainder is —x — 3.
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Exercise 3.2

1.

10.

11.

12.

Without the use of a calculator, find the remainder and the quotient when the given
polynomial is divided by each of the accompanying expressions.

(a) x3+4x—7 (i) x+2 (i1) 92—4
(b) 3x3 —5x2 —-28x+ 12 (1) 2x-1 (i) x —x+2
(¢) 5-3x+6x —4x3 (i) 1+2x (i) 2x—-Dx+1)

4 3 2 2
(d 6x —5x +2x —-5x+10 (i) x-2 (i) x -4 (i) 2x +x +x-2

2
. When the polynomial x + px + g is divided by x — 1 and x + 2 the remainders are 5 and 5

respectively. Find the values of p and q.

3 2
. When the polynomial x +px +gx + 1 is divided by x + 3 and x — 2, the remainders are

10 and 9 respectively. Find the values of p and q.

3 2
. The polynomial 2x + px + g has a factor (x + 1) and leaves a remainder of 16 when it is

divided by (x — 3). Find the values of p and q.

3 2
. Whenx - px+qisdivided byx —3x+ 2, the remainder is 4x — 1.

Find the values of p and g.
3 2 2
When 2x —3x —10x + 1 is divided by x —x — 6, the remainder is ax + b. Find a and b.

4 3 2 2
3x +5x +ax +bx+ 13 leaves a remainder of 2x + 1 when divided by x — 2x — 3.
Find a and b.

3 2 2
. ax +bx — 6x+ 8 leaves a remainder of 2 — x when divided by x +x —2. Find g and b.

5 3 2
When x —7x +4x — 2 is divided by (x — 1)(x — 3)(x + 1), the remainder is px +gx +7.
Find the values of p, g and r.

5 4 3 2 2
When2x —x +px +gx +rx+1isdivided by (x — 1)(x - 2), the remainder is

2
2x +3x+ 1. Find the values of p, g and r.

3 2
The polynomial 2x — 3ax + ax + b has a factor x — 1 and leaves a remainder of —54
when divided by x + 2. Find the values of g and b.

3 2
The polynomial ax + bx + 3x+ 2 has a factor 3x + 1 and leaves a remainder of 9x — 5
when divided by x — 1. Find the values of a and b.
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13. The polynomials P(x) and Q(x) are deﬁned as follows
3
P(x)= x—l Oox)= x +4x +ax + bx+5.
(a) Show thatx— 1 and x + 1 are factors of P(x).

2
(b) Find a and b if O(x) leaves a remainder of 2x + 3 when it is divided by x - 1.
(c) With these values of a and b, ﬁnd the remainder when the polynomial

4P(x) + 50(x) is divided by x - 1.

14. Determine the Values of a, b and ¢ in the identity
2 2 2
x +x tx+l=x +ta)x - +bx+ec.
By using an appropriate numerical substitution or otherwise, find the remainder when
100 010 101 is divided by 9 999.

3.3 Extension to the Factor and Remainder Theorems

e In this section, we will extend the factor and remainder theorems to complex
polynomials with real coefficients.

e When the complex polynomial f(z) is divided by [z — (a + bi)],
the remainder is given by f(a + bi).

e If f(a+bi)=0 < [z—(a+bi)]is afactor of f(2).

Example 3.8
3
The polynomial f(z) =z —1isdivided by (z—1 —).

Find the remainder and the quotient.
Solution:
Rewrite [z—1—-ilas[z—(1+1)].

3
Hence, the remainderis f(1 +i)=(1+i) —1=-3+2i.

3 2
Let z =1=z-(1+d)][z +bz+c]-3+2i where b and ¢ are complex.
Comparing z coefficients: b—(1+i)=0 = b=1+i
Comparing constant terms: —-c(1+i)-3+2i=-1
—2+2i .
c= =2i
1+

2
Hence, the quotient is z + (1 + i)z + 2i and the remainder is -3 + 2i.
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3.3.1 The Complex Conjugate Root Theorem

o Let f(x) be apolynomial with real coefficients.
If a + bi is a root of f(x), then its conjugate a — bi is also a root of f'(x).

e That is, for a polynomial with real coefficients, the complex roots appear as
conjugate pairs.

e For example, a polynomial with real coefficients of degree 9 will have at least one
root which is wholly real and a maximum of four pairs of complex conjugate roots.

Example 3.9 Proof of the Complex Conjugate Root Theorem

Prove that if a + bi is a root of a polynomial f(x) with all real coefficients, then its conjugate
a — bi is also aroot of f(x).

Solution:

n—1 2

Let f(x)=ax"+a x" " +a, x"" +...+ax2+ax+a
n n—1 n-2 2 1 0

Let z be a complex root of f(x). Thatis f(z)=0

Hence, azn+a_zn_l+a_zn_2+...+a 2 +az+a, =0
n n-1 n-2 2 1 0

Take conjugates of both sides:

-2

n_1+an_2zn +...+a222+alz+a0 =0

n
a,z” +a, z

But a,z" + an_lz”_1 + a,,_zz"_2 +.o+ a222 +az+a,

a,z” + a,,_lzn_1 + cz,,_zz"—2 +...+ a222 +az+a,

n
a,z" +a, .z

+o. 4z vazta,

—\n —\n~-1 —\n—2 —\2 -
= () s () a2 (2) 4 ()

n—1 2

]

n_
+a,,z

Hence:

a,(2) +a,4(2) " +a,(2) T 4ty (2) +a(2)+ay =0

That is: Ff@=0 = f(z)=0.
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Example 3.10

4 3 2
Without the use of a calculator, verify that (z — i) is a factor of f(z)=z +z -5z +z-6
and hence express f(z) as a product of all its complex factors.

Solution:

4 3 2
f@)=i +i —5i +i—6=0. Hence (z — i) is a factor of f(z2).
By the Complex Conjugate Root Theorem, since the coefficients of f(z) are all real,

the conjugate of (z — i) = (z + i) must also be a factor.

4 3 2 2
Hence, z +z -5z +z-6=@-i(z+ilz +bz+c)

=@z +1)(z +bz+0)
By inspection:

z +z3—522+z—65(22+ 1)(zz+z—6)
=z-Dz+id)z-2)z+3).

(Z+3)=(z~2)-(Z+i ) [z~ )

tac.tor(z 4+23—52 2+z—6)

—1b]

Example 3.11

5 4 3 2
Without the use of a calculator, solvex —x + 13x — 13x + 36x — 36 =0, giving all roots
(real and complex) in exact form.

Solution:
5 4 3 2
Let f(x)=x —x +13x —13x +36x—36.
f(H=1-1+13-13+36-36=0 = (x—1)is a factor.
Factorlslng by 1nspect10n
5
X —x4+ 13x - 13x +36x—-36= (x—l)(x +bx +cx + dx + 36)

Compare x terms: b=0

Compare x3 terms: c=13

Compare x terms: d=0

Hence, x5 —x4 + l3x3 - 13x2 +36x-36=(x— 1)(xz + 13x22+ 36)

=x-Dx +4H)x +9)

5 4 3 2
x —x t13x —13x +36x—-36=0 = x=1,+2i, +£3i
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Example 3.12

7 6
Without the use of a calculator, solve x +x +x+ 1 =0, giving all roots (real and complex)
in exact form.

Solution:
7 6
Let f(x)=x +x +x+1
fH)=-1+1+-1+1=0 = (x+1)isa factor.
Factorising by inspection:
7 6 6
x tx tx+1=(x+1)x +1)
7 6
x +x +x+1=0 = x=-lorx =-1

6
Consider x =-1.

6
Rewriting in cis form: x =cis(n + 2km) keZ
By de Moivre’s Theorem: X = cis %+2an)
Fork=0: X = cis r =—3+li
6 2 2
i 3 1
Complex conjugate: xX=cis| ——|=—~—=Ii
p Jjug 6) PR
Fork=1: X = cis £j=i
2
Complex conjugate: x = cis ——gj =—i
Fork=2: X = cis ST —£+—1-i
6 2 2
) [ 5m NG) .
Complex conjugate: x=cis| ——|=———1i
6 2 2
7 6
Hence,x +x +x+1=0 = x=-1,%1, —\[?ii—l—i, ———3—i—1—i
2 2 2 2
Note:

o As the coefficients are all real, the complex roots appear as conjugate pairs.

o In Example 2.2, to obtain all the six roots of z = —I, six different values of k were required.
But in this example, using the Complex Conjugate Root Theorem, only three different values of k
were sufficient.
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Exercise 3.3

1.

*8.

*9.

Without the use of a calculator, in each of the following, verify that the second
polynomial is a factor of the first polynomial. Hence factorise the first polynomial

completely.

3 2 3 2
@z +2z +z+2, z—i (b) z +2z +4z+8, z—2i
(c) 4z —4z +z—-1, 2z+i (d)z +2z -6z+8, z—-1+1i

Find the values of a and b, where a and b are real, such that (z — 4i) is a factor of
3 2 3 2
z +az + bz - 64. Hence, factorisez +az + bz — 64.

Find the values of a and b, where a and b are real, such that (z — 1 — i) is a factor of

3 3
z +az+ b. Hence, factorise z + az + b.

Find the values of a and b, where a and b are real, such that (z — 1 + 2i) is a factor of
4 3 2 4 2
z —2z +2z +az+b. Hence,solvez —2z +2z +az+b=0.

Find the values of a and b, where a and b are real, such that (z + 2 + i) is a factor of
4 3 2 4 3 2
4z +qz +21z +bz+5. Hence,solvedz +az +21z +bz+5=0.

Find the values of a and b, where a and b are real, such that (3z — i) is a factor of
4 3 2 4 2
az +18z +28z +bz+3. Hence,solveaz +18z +28z +bz+3=0.

Without the use of a calculator, solve for z, where z is a complex number.

4 2 4 3 2
@z +z -2=0 (b)z +z -2z —6z—-4=0
4 3 2 4 3 2
(¢)z —4z +4z -9=0 *(d) z —4z +9z —16z2+20=0
Without the use of a calculator, solve for x, where x is a complex number.
5 4 6 4 2
(@ x —x +x—-1=0 b)yx —x +x —1=0
7 6 8 6 2
¢)x —x —x+1=0 dx —-x —x +1=0

6 4 2
(x —i) and (2x + i) are factors of the polynomial 4x +9x +ax +bx+c
where a, b and c¢ are real. Find the values of a, b and c.

6 5 4 2
*10. (x—1+i)and (x + 1 +i) are factors of the polynomial x +x +x +ax +bx+c

where a, b and c are real. Find the values of g, b and c.
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04 Functions

4.1 Review of Functions

¢ A function f between sets X and Y is a rule that associates each element in set X
with a unique element in set Y.
o X is called the domain of the function f, while Y is the codomain of f.
e The set of all images of f in Y is called the range of 1.
The range is a subset of the codomain.

e Where the domain and codomain of a function is not specified, the natural domain
is assumed: this is the largest set that qualifies the mapping rule as a function rule.
The codomain will then be the natural range of the function. This is the set of all
images corresponding to the elements in the natural domain.

¢ In this book, the following notations will be used interchangeably to describe
domains and ranges.

e R =(—w,0)={x: xeR} « RF=(0,0)={x: x>0, xeR}
e Ry =[0,0)={x:x>0, xeR} o Rj=(-00,0]={x:x<0, xeR}
e R-{a}={x:x#a, xeR} e (@, b]={x:a<x<b, xeR}

o The “square bracket” is used to denote a closed interval, i.e. it includes the endpoint
while the “round bracket” is used to denote an open interval, i.e. it does not include the end
point.

4.1.1 Onto Functions

e A function £ is said to be an onto function if its range is identical to its codomain.

Example 4.1

Determine if each of the following functions are onto functions or otherwise.
(@) f(x)=x+ 10 with domain [0, «) and codomain R.

(b) f(x) = In (x) with domain R* and codomain R .

Solution:

(a) Range for f is {x: x> 10, x € R} which is a proper subset of the codomain R .
Hence, f is not an onto function.

(b) Range for f is R which is also the codomain. Hence, f is an onto function.
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4.1.2 One to One and Many to One Functions

e Where two different elements in domain of the function f are mapped to the same
element in the codomain, the function is called a many-to-one function.
o That is, fis a many-to-one function if 3 q, b such that
a # band f(a)= f(b).

e Where no two elements in the domain of the function f are mapped to the same
element in the codomain, the function is called a one-to-one function.
o Thatis, fis a one-to-one function if f(a)= f(b) then a = b.
» Graphically, f is a one-to-one function if the graph of f passes the
horizontal line test.
« When a horizontal line is drawn through its graph,
the line must pass through no more than one point on its graph.

Example 4.2
fta glx)

21 24

The graphs of the functions f and g
are drawn in the accompanying

diagrams. Determine with reasons if i i ‘\
these functions are one-to-one or ' — e x o x
many-to-one functions. \.5 \.S

Solution:
f is a many-to-one function as there are g 1s a one-to-one function as there are
at least two elements in the domain that no two elements in the domain that map
map to the same image. to the same image.
fix} glx)
2+ 24
x .\ - x
\.5
2T 24
Notes:

o A function is a many-to-one function if it fails the horizontal line test.
o Clearly the graph of g passes the horizontal line test and hence g is a one-to-one function.
o As seen above, the graph of f fails the horizontal line test and hence f'is a many-to-one function.
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Example 4.3
Determine analytically if each of the following functions are one-to-one or many-to-one.
@ f(x)=x+10 (b) f(x)=x2forx>0 (c) f(x)=(1—x)2for xeR.
Solution:
(a) Let f(a)= f(b). = a+10=b+10
a=b

Hence, f is a one-to-one function.

(b) Let f(a% =f§b) where a > 0 and > 0.

= a=b
a=+b
But a > 0 and b > 0, hence a = — b is not possible.
Therefore, a = b. Hence, f is a one-to-one function.

(¢) f(0)=1 and f(2)=1.
Therefore, there are at least two elements in the domain that map to the same image.
Hence, f is a many-to-one function.

Example 4.4

2
Find the largest possible domain for f(x) =(x + 1) to be one-to-one.
Solution:

The natural domain for f is R. fis symmetrical about the line x = —1.
Hence, largest possible domain is either (oo, —1] or [-1, ).

Example 4.5

Find the largest possible domain with the limits of the domain being numerically as close to 0
as is possible for each of the following functions to be one-to-one.

(@ /) =sin (x (b f(x)=cos () © /() =tan ()
Solution: :
(a) The graph of f(x) = sin (x) “passes the horizontal /\ T /
line test” for | —~,~ |, M WA I Sy A
ne tes r[ 5 2} / = 2 : e

>

Hence, required domain is {—g g}
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(b) The graph of f(x) = cos (x) “passes the horizontal y
line test” for [-mrt, 0] or [0, 7].

Hence, required domain is [-m, 0] or [0, «]. /\ / \ /\

(c) The graph of f(x) =tan (x) “passes the horizontal y
line test” for —E, .
2°2
'/X'
/ In " A n 3/

>

Hence, required domain is (—% g) Ot i T

Notes:

The domain that makes the circular functions sin(x), cos(x) and tan(x) one-to-one functions is called
the principal domain.

The principal domain for sin(x) is conventionally set as [——125, g] .

o The principal domain for cos (x) is [0, «t].

The principal domain for tan (x) is (—%, g) .

Exercise 4.1
1. Determine if each of the following functions are onto functions or otherwise.
(@) f(x)=-2x+ 10 with domain {x:x>1, xeR} and codomain R.
(b) f(x)= &* with domain R and codomain R.
©) f(x)= x2 — 10 with domain R and codomain R.
@d fx)=x(x—- 2)2 with domain R and codomain R.

2. The graphs of the functions f are drawn in the accompanying diagrams. Determine with
reasons if these functions are one-to-one or many-to-one functions.
(a) (b) (c)

flx Fx) fn

s+ s+

/\ ; /.\\,, Fox e [/ or
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3. Determine analytically if each of the following functions are one-to-one or many-to-one.

@ /@=3-2x ®) () =2+ @-1)
() f)=(&x-1) (@) f()=(x—-Dx+2)x-3)
© fo="1 ® £ = ——
x (x-2)
(g)f(x)=5—(x+1)2 for x>0 (h)f(x)=(x—2)4 forx>0
(1) fx)=sin(x) for -n<x<m G fx)= cosz(x) for0<x<m
4. Find the largest pogsible domain for each of the following functzions to be one-to-one.
(@) f(x)=(2x-3) (b) f(x)=4-3(x+2)
© F0) = ——+1 @ ) =1-(x+2)
(x+1)

© ()= y(x-2)? +1 ©® F0) = J@x—5)%+4
() f(x) = 25— (x+2)? (h) f(x) =4 - \16—(x—2)*
Q) f(x) = V4—x2 G) f() = {(x-1)2 -1

5. Find the largest possible domain with the limits of the domain being numerically as close
to 0 as is possible for each of the following functions to be one-to-one.

(a) f(x)=sin (2x) (b) f(x)= cosz(x/2)
(c) f(x)=tan (x +/4) (d) f(x)=cos (x)
(e) f(x) =2 cosec (x/2) ) f(x)=3sin(x)+ 4 cos (x)

4.2 Composition of Functions

¢ In this section we will explore the procedure for combining two or more functions.
o Let /1 represent the composition of function f followed by function g.
« This is written symbolicallyas A= go f or h=gf.
« The image for x under 4 is written as
h(x)=go f (x)=g(f (%))
or h(x)=gf(x)=g(fx)).

e The composition of two or more functions may or may not be a function.
Hence we also need to determine the mathematical conditions for which the
composition of two or more functions is a function.
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e Casel

o The diagram below shows schematically the mappings for two functions
fand g.
« The domain for f is {1, 2, 3 } and the range for f is {11, 12, 13}.
« The domain for g is {11, 12, 13} and the range for g is {16, 17, 18}.

f g
Domain of f Range of f Domainof g Range of g

Consider h =g f.

o From the schematic mappings: Aly=g(f(1)) =g(11)=16
h2)=g(f(2)) =g(12)=17
h(3)=g(f(3)) =g(13)=18

In this instance, % is a function as each element in its domain has a

unique image.

The domain of 2 is {1, 2, 3}

and the corresponding range is {16, 17, 18}.

o Case?

o The diagram below shows schematically the mappings for two functions
fand g.
« The domain for f is {1, 2, 3 } and the range for f is {11, 12, 13}.
« The domain for g is {11, 12, 13, 14}
and the range for g is {16, 17, 18, 19}.

f g
] T
17
G 1 18
I\
Domainof f Range of f Domain of g Range of g

o Consider =g f.
Clearly: h(l)=g(f(1)) =g(11)=16
h(2)=g(f(2)) =g(12)=17
h3)=g(f(3)) =g(13)=18
« In this instance, 4 is a function as each element in its domain has a
unique image.
The domain for 4 is {1, 2, 3} and the its range is {16, 17, 18}.
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e Case3

o The diagram below shows schematically the mappings for two functions
fand g.
« The domain for f is {1, 2, 3 } and the range for f is {11, 12, 13}.
« The domain for g is {11, 12, 14} and the range for g is {16, 17, 19}.

f g
Domain of f Range of f Domainof g Rangeofg

« Considerh=gf.
« Clearly: Wl)=g(f(1)) =g(11)=16
h2)=g(f(2)) =g(12)=17
h(3)=g(f(3)) =g(13) does not exist
« In this instance, 4 is not a function as there is an element in its
domain that does not have an image.

In Case 1, the composition g( f(x)) is a function.
 Note that the range of f = domain of g= {11, 12, 13}

In Case 2, the composition g( f(x)) is a function.
o Note that the range of f = {11, 12, 13} and
the domain of g = {11, 12, 13, 14}.
o That is, the range of f — domain of g.

In Case 3, the composition g( f(x)) is a not function.
 Note that the range of f = {11, 12, 13} and
the domain of g = {11, 12, 14}.
o That is, the range of f & domain of g.

In general, the composition g( f(x)) is a function only if
the range of f/ < the domain of g.
o That is, the range of the first function applied is a subset of the
domain of the second function applied.
o The domain of g{ /(x)) is not necessarily the domain of f. See Example 4.8.
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Example 4.6
Given that f(x)=x+4 and g (x) = Jx , determine with reasons if each of the following
compositions are functions. (a) fg (b) gf (c) f 2 (d) gz.
Solution:
(a) Rangeforgis {x:x>0,x € R} or R§. Domain for f is R.
Hence, range of g c domain of f. = fgis a function.

(b) Range for f is R. Domain for gis Rj.
Hence, range of g & domain of f. = gf is not a function.

(¢) Range for f is R. Domain for f is R.

2
Hence, range of f =domainof f. = f is a function.

(d) Range for g is R§j. Domain for gis Rj.

2
Hence, range of g =domainof g. = g is a function.

Example 4.7
2 2
Let f(x)=2x+3,and g (x) = ——1—2 Find the rule for: (a) fg () gf (© f (@) g.
X+

Solution:
(2) 2 () =1f(g ®)
- 1 1_ 2
_f(x + ZJ X+ 2+3'
(b) gf @) =g(f®)
= - 1 _ 1
g 2x+3)+2 2x+5
© £ =7 @)
=f2x+3)=22x+3)+3=4x+9
@ £ () = g(z00)

_ 1 _ 1 =x+2
8512 ( 1 ] 2x +5
+ 2
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Example 4.8

Let £(x)=x+ 1 and g(x) = ——.
x—2

(a) State the natural domain and corresponding natural range for f and g.
(b) Find the largest possible domain for f'so that g fis a function.
(c¢) Using this domain for £, state the composition rule, domain and range for g .

Solution:
(a) Natural domain for f= R. Natural range for f= R.
Natural domain for g= R — {2}. Natural range for g= R — {0}.

(b) For g f to be a function, the range of f must be within the domain of g.

For the range of f to be within the domain of g,
the range of f must be restricted to R — {2}.

To achieve this, the element “2” must be removed from the range of f.
As f(1) =2, this is achieved if we remove the element “1” from the domain of f.

That is, the domain of f is restricted to R — {1}.
Hence, the largest possible domain for f is R — {1}.

(c¢) Therule forgfisgivenby gf(x)=g(f(x))

gt )= e =

x+1-2  x—-1

The domain for g /= restricted domain of f= R — {1}.
The range for g /= restricted range of g= R - {0}.

Notes:

o In part (b), since g is defined only for x # 2, g fis defined only for f (x) # 2.
Therefore x+1#2 = x=#1.

o Alternatively, to determine the largest possible domain for f so that gf is a function, the following
method may be used. In this method, the composition rule is used to determine the largest possible
domain. However, this method must be used with caution as it does not always work.

See Example 4.9 and Example 4.10.

Alternative Solution to (b):
The rule for g fis givenby g f(x) = g(f(x))
1 1
& ) x+1-2 x-1

From the composition rule, the largest possible domain of fis R — {1}.
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Example 4.9

2
Let £(x)=(x—1) and g(x) = Vx +1.
(a) Find the rule for fg given that fg is a function.
(b) Determine the domain and range for fg.

Solution:
(a) F8() = f(g()
= f(Nx+1)
= (Jx +1-1)?
= (Wx)?* =x
(b) Natural domain for g is Rj;. Range for g is [1, c0). Domain for f is R.
Hence, range for g © domain for f.
It is therefore not necessary to restrict the domain of g.
Hence, domain for fg = natural domain for g
=R+
0 .
The corresponding range of /g = R} .
Notes:

o By just observing the rule for fg(x) = x it would “appear” that the domain for fg would be R .
o This would be incorrect as fg(x) =f( Jx+1 ) which requires x > 0.
o As mentioned in the notes accompanying Example 4.8, caution must be used if you choose to

determine the domain or range of a composite function by observing the structure of the composite
rule.

Example 4.10
Let f(x)=In(x),x>1and gx)=x—1.

(a) Find the largest possible domain for g so that fg is a function.
(b) Using this domain for g, state the rule, domain and range for fg.

Solution:
Natural domain for g= R . Range forg= R.
Given domain for f= (1, «). Range for f= (0, ).

(a) For the range of g to be within the domain of f ,
the range of g needs to be restricted to (1, ).
Thatis, 1 <x—-1<0w0 = 2<x<oo.

Hence, the largest possible domain for g is (2, o).

(b) fg@)=fgM))=flx-1D=in(x-1).

Domain of f g = restricted domain for g = (2, ).
Corresponding range of fg = R*.
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Example 4.11

Given that fg (x) = 2 and f(x)= X , find the rule for g.
I-x x+1

Solution:
Using the rule for f: fg x)=f(gkx))
__ 8w
g(x)+1
But fegx)= 2
1-x
Hence, gx) _ 2
gx)+1 1-x

gx) —x g(x)=2g(x)+2
gx) +x gx) =-2
(1+x) gx)=-2
-2

glx)= m

Example 4.12

2
Given that fg (x) =1 +x and g(x) =x — 1, find the rule for f.

Solution:
Using the rule for g: fg x)=f(gx)
=fx-1)
But fg(x)=1+x2
Hence, fx-1)=1 +x2 [1]

Let u=x-1 =>x=u+1
Substitute u=x — 1 and x =u + 1 into [1],

F@)=1+@+1)
=u2+2u+2

2
Hence, the rule for fis f(x)=x +2x+2.

Exercise 4.2

1. Given that f(x) =x—4 and g (x) = vx—1, determine with reasons if each of the
2 2
following compositions are functions. (a) fg (b) gf () f d g.

2. Given that f(x)= 2 and g (x) = Vx +1, determine with reasons if each of the following
2 2
compositions are functions. (a) fg (b) gf (©) f dg.
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10.

11.

12.

13.

14.

. Giventhat f(x)=1-2xand g (x) = % , determine with reasons if each of the
X+

2 2
following compositions are functions. (a) fg (b) gf (¢) f d g.

Given that f(x) = 3" and g (x) = % , determine with reasons if each of the following

compositions are functions. (a) fg (b) gf (¢) f ? (d) g2.
Let f(x)=x-3,and g (x) =x2 + 3. Find the rule for: (a) fg (b) gf (c) f2 (d) g2.

Let f(x)= ﬁ, and g (x) =x2 — 1. Find the rule for: (a) fg (b) gf (c¢) f2 (d) gz.

Let f(x)= e, and g (x) =1 + 2x. Find the rule for: (a) fg (b) gf () f 2 (d) g2.

Let f(x)= i,andg(x)= ﬁ Find the rule for: (2) fg () gf (©) f (d) g

. Let f(x)=5—xand g(x) = 1/x.

(a) State the natural domain and corresponding natural range for f and g.
(b) Find the largest possible domain for f'so that g f'is a function.
(c) Using this domain for f, state the composition rule, domain and range for g f.

Let f(x)=x —5and g(x) = 1+ x.

(a) State the natural domain and corresponding natural range for # and g.

(b) Find the largest possible domain for g so that fg is a function.

(c) Using this domain for g, state the composition rule, domain and range for f g.

2
Giventhat f(x)=(x—1) wherex>2and gx)=1+ Jx , find the largest possible
domain for g so that f g is a function. Using the restricted domain, state the rule, domain
and range for the composite function f'g.

2
Given that f(x) =x + 2 and g(x) =1 + Vx—2 where x > 3, find the largest possible
domain for fso that g fis a function. Using the restricted domain, state the rule, domain
and range for the composite function g f.

Given that £ (x) = In (x), g(x) =x + 1 and k(x) = sin (x); determine the rule for each of the

following and state with justification whether the composition is a function. If the
composition is a function, state the domain and range of the composite function.

(a) fgh (b) ghf

. x 2 .
Given that f(x) =5 ; g(x) =x , and A(x) = /25— x ; determine the rule for each of the
following and state with justification whether the composition is a function. If the
composition is a function, state the domain and range of the composite function.

(@) fgh (b) ghf
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15. Given that fg (x) =x+ 3 and f(x) = x — 2, find the rule for g.

16. Given that fg (x) =x — 2 and f(x) = 1/x, find the rule for g.

17. Given that fg (x) = Ll and £ (x) = 2x + 1, find the rule for g.
X+

18. Given that fg (x) =x + 4 and g(x) = 1 — x, find the rule for f.

19. Given that fg (x) =2x — 1 and g(x) =x + 1, find the rule for /.

2
20. Giventhatgf(x)=x + 1 andf(x)=x+ 3, find the rule for g.

21. Given that g f(x) = X and fx)= #, find the rule for g.
x+1 1-2x

4.3 Inverse of a Function

o The inverse of a function is a relation that maps the image back to the original
object.
o The inverse of a function f may or may not be a function.
o If the inverse of a function f is also a function,
it called an inverse function.

-1
o The inverse function is denoted f .

e Where the domain and codomain of a function f are specified,

-1
then the inverse function f exists only if f is a one-fo-one and onto function.
e If f: X > Y, suchthat f(x)=y,

f—1 'Y - X, and f—l(y)=x.

e If the domain of f is given or the natural domain is assumed with no mention of the
codomain, then f B exists only if f is a one-fo-one function.
+ g ()=g/(@=x, theng=/ .
o The domain of f = the range for f
The range of f T the natural (or restricted) domain of f.

e Graphically, f exists only if the graph of f passes the horizontal line test.
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Example 4.13
Prove that if f is a many-to-one function, then the inverse of f cannot be a function.
Solution:

As f is a many-to-one function 3 g, b in the domain of f
such that a # b and f maps both ¢ and b to a common image k.

Hence, the inverse of f will map the image & to a as well as b.
This makes the inverse of f a one-to-many mapping which is not a function.

Example 4.14
fix)
The graph of a function f is given below. "

(a) Verify that the inverse of f is not a function.
(b) Find the largest possible domain for f such that the

inverse of f is a function. s
(c) State the domain and range for the inverse of f

corresponding to the restricted domain of fin part (b).

Solution:

(a) f is not a one-to-one function as it fails the horizontal line test.
Hence, the inverse of f is not a function.

(b) From the graph of f, f is a one-to-one function for x > 2 (or x < 2).
Hence, the largest possible domain over which f is a one-to-one function is

[2, o) or (—o0, 2].

(c) The domain for the inverse of f = range for f=[0, «)
The range for the inverse of f = restricted domain for f =[2, o) or (—o0, 2].

Example 14.15

Determine with justification, if the inverse of f/: R —> R, f(x) =4x + 1 is a function.

Find the rule for the inverse function if it exists.
Solution:

Clearly, f is a one-to-one function.
The range of f = codomain of f = R. Hence, f is also an onfo function.
Hence, the inverse of f is a function.
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To find the inverse rule, let y=4x+1
Express x in terms of y x= yT_l
-1
Since f(x)=y, then f »=x
-1 —
Hence f )= yTl

-1 _
That is, the rule for the inverse is f (x) = le

Note:
o In writing the rule, the “letters” x and y are dummy variables.
It is immaterial which letter is used. What is important is the relationship that is expressed.
By convention, when stating mapping rules, the letter x is used.

Example 14.16

Determine with justification, if the inverse of each of the following functions are functions.
Find the rule for the inverse function where it exists.

@ 6 =(—1) ®) f(x)=ln () d) ()= l_l_
+Xx

Solution:

(a) The natural domain for f is R.
f(2)=1and f(0)=1
Hence, f is not a one-to-one function within its natural domain.
Therefore, the inverse of f (within the natural domain of /') is not a function.

(b) f is a one-to-one function within its natural domain.
Hence, the inverse of f is a function.

For the inverse rule, let y=In(x)
: y
Express x in terms of y x=e
-1
Since f(x) =, f )=x=¢
-1
Hence, the inverse rule is f )= ¢

(c) f is a one-to-one function within its natural domain.
Hence, the inverse of f is a function.

For the inverse rule, let y= 1

1+x
Express x in terms of y l+x= 1

y

x= 1_ 1= 1-y

y y

Hence, the inverse rule is f - x)= 1-x
x
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Example 14.17

2
The function f is defined by the rule f(x) =x + 1.
(a) Verify that within the natural domain of /', the inverse of f is not a function.
(b) Find the largest possible domain for f so that the inverse of f is a function.

-1
(c) For the domain of f defined in (b), give the rule for f and its corresponding
domain and range.

Solution:

(a f(2)=5andf(-2)=5.
Hence, f is not a one-to-one function within its natural domain.
Therefore the inverse of f is not a function.

(b) The rule f(x) = x2 + 1 is symmetrical about x = 0.
Hence, for x > 0 (or x < 0), f becomes a one-to-one function.
Therefore, the largest possible domain for f so that its inverse is a function is
[0, ©) or (~, 0].

2
(c) For the inverse rule, let y=x +1
Express x in terms of y, x=%y-1
-1
Since f(x) =y, f =x
-1
which gives f @) =xy-1

-1
For f with domain [0, o), the rule for the inverse of fis f (x)=+x—1.
-1
The domain of f/ =range of f =[1, ).
-1
The range of f = domain of f =[0, o).

-1
For f with domain (—oo, 0], the rule for the inverse of f is f (x)=-vx-1
-1
The domain of f =range of f=[1, ).
-1
The range of f = domain of f= (-0, 0].

Note:
o [n this example, the inverse of f is not a function when the natural domain of f is used.
However, if we restrict the domain of f, the inverse of f becomes a function.

o Therule f7'(y) = £y/y—1 clearly is not a function rule.
There is therefore a need to determine which rule matches the restricted domain used.
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Exercise 4.3

1. The graph of fis given below.
(i) In each case, determine if the inverse of f is a function.
(ii) Ifthe inverse of f is not a function, find the largest possible domain for f so that
the inverse of f is a function.
(iii) State the domain and range of the inverse function.

(a) (b)
fix) flx)
20+ 10+
101
T T X t t X
-2 2 4 4 -2 2
(©) (d)
fix) fix)
5 T 24
X
-4 -2 2
5 t } > X
2 2 4
-10 1

2. Determine (with justification) if the inverses of the following functions are functions.

@f:R-o>R, fx)=1-4x (b)f:]R—)ll:\{,f(x)=(x—2)2
2
(c) fGx)=(1+2x) (d) fx)=~x+3
@ f@ =2 0 /0= ——
x 1+x

(@ f()= ™ ) f0)=(-20) x> 15

(1) f(x)=sin(x), t<x<mw (G) f(x)=tan (x),0<x<2m
3. For each of the following functions, find the rule for inverse relation. )

(@) f(x)=3+2x , (b) f(x)=—5x—42 (c) f(x)=()3c—4)

@ f=1-x-2) (e) f&®)=(2x+3) ® fx)=x

(@) f(x)= "> () f)=In(1+2x) @) f= 1—1—;

. _1-x _ _ 1

G f)= 1 k) f(x)=x+1 @) fx) N
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4. For each of the following functions f:

10.

(1) verify that within the natural domain of f, the inverse of f is not a function.
(i1) Find the largest possible domain for / so that the inverse of f is a function.
(i11) Using this domain for £, state the rule for the inverse of / and its corresponding
domain and range.

@ )= (e +4) ®) f@=1+G-2) © x —1
2
@ f@=@+1) +1 © f0)=— O ——
I+x (x-1
(&) £ () = sin () (h) (@)= cos (2) (i) /() = tan (g)

Given that f(x) = v1—x and g(x) = &*:
(a) find the rule for composite function fg and state its natural domain and range
(b) find the rule for composite function g f and state its natural domain and range

-1 -1
(c) determine the inverse functions (fg) and (gf) where they exist.

1
4—x

Let f(x)=2x+1and g(x)=

-1 -1 -1

(a) Determine the rules for the inverse functions f ,g and(gf) .
-1 -1 -1

(b) Verifythat(gf) =f g .

Let f(x)= vx+1 and g(x)= ITI
x

-1 -1 -1
(a) Determine the rules for the inverse functions f ,g and (fg) .
o T R |
(b) Verifythat(fg) =g f .

2
Let f(x)=x and g(x)= Jx . Determine the domain of fand g so that:
(a) f is the inverse of g. (b) gis the inverse of f.

2
. Let f(x)=(1-x) and gx)=1- Jx . Determine the domain of fand g so that:

(a) f is the inverse of g. (b) gis the inverse of f.
Let f(x)= ! and g(x)= i—1
Vvx+1 x2 .

Determine the domain of fand g so that f is the inverse of g.

© O.T.Lee 62



05 Sketching Techniques

05 Sketching Techniques

5.1 Graphs of Inverse Functions

¢ In the previous chapter, it was noted that if f(x) =y,
-1
then the inverse function f  will map y back to x.

o That is, a point (A, k) on the curve y = f(x) corresponds
to the point (k, /) on the curve y = f7'(x).
« Hence, the graph of y= f~'(x) may be obtained by reflecting
the graph of y = f(x) about the line y = x.
e The graphs of y= f(x) and y= f~'(x) should they intersect,
will intersect along the line y = x.

e The table below summarises the distinguishing features between the graphs
ofy=f(x)andy= f7(x).

y=f)

Rootatx=a

y=f"(

Vertical intercept aty = a

Vertical intercept at y = a Rootatx=a

Horizontal asymptote: y =a Vertical Asymptote: x =a

Vertical Asymptote: x=a

Horizontal asymptote: y =a

Example 5.1 Y
04 !
Given the sketch of y = f (x), sketch the graph of y = f~'(x). '-.‘
\
Solution: : AN
y y=x ) i == ) s
ot ii w N
~1 \
y=f ) I oI
1 \ !
54 \ -104 i
N ] S S
/ A T
T R y=f() y=f"®
ettt + -t X ol 3
.1'0 15 1 \\ ; t‘ 1'0 Root at x=2 Vertlcal intercept
+ \wl ! aty=2
\ \ —
\ \ i Vertical intercept Root at x= 1
! _ aty=1
5 1~ i y = fix} 7 :
s 1 ‘ Horizontal Vertical
/ + ’i asymptote y =2 asymptote x =2
T ! Vertical Horizontal
T i asymptote x =4 asymptote y =4
0+ i
/ v i
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1
5.2 Graphs of Reciprocalsy= ——
d P 7@

e The sketch of the curve y = ﬁ may be obtained from the graph of y = f(x)
X
by “manipulating” the graph of y = £ (x).
o The point (h, k) for k # 0 on the graph of y = f(x) corresponds

. 1 1
to the point (4, —) on the graph of y = ——.
k f(x)

e The graphsof y=f(x)and y = f(l ) should they intersect will intersect
x

on the lines y =+ 1.

e The table below summarises the distinguishing features between the graphs

ofy=f(x)and y = L

f&)
S y= 1
= x -
g /()
Rootatx=a Vertical Asymptote at x =a

.. 1
Vertical intercept (0, @) where a # 0 Vertical intercept (0, —), a# 0
a

Vertical Asymptote: x =5 Rootatx=5

. 1
Horizontal asymptote: y=a,a#0 Horizontal asymptote: y = —
a

. 1
Local Minimum at (h, k) where k# 0 | Local Maximum at (4, ;) where k0

. 1
Local Maximum at (%, k) where k=0 | Local Minimum at (#, ;) where k # 0
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Example 5.2 . SV_ ,
: 1 \ /
Given the sketch of y = f(x), sketch the graph of y = ——. \ /
f (x) \‘ /I
\
Solution: \ /
\Y 75 x
y a \\ //
\ 4 \\/\'—/ \ y Intercept
\ 5T Local Minimum t‘),i
! k-2) 2
\\ s+
\\
91 y=f@) y=—
k-3 | /()
_ Vertical
k' - \ 50:025 atx=a, asymptotes
. x=a,x=b
» Vertical Intercept | Vertical Intercept
] | a 773
y = = N o Max point at
£(x) 1 f( x) Min point at 1
(ka '_2) (k5 _5 )
54
4 <

Exercise 5.1

1. For each of the following graphs sketch on the same set of axes the graph of y= ™' (x).

(@ (b)
y
10+
4 > x +
.10 10 -10
-10 4
© (d)
y y
10+
T 10 .:-
~+ +—t-s X i } x
-10 10 <10 10
.10 _.-
-10 +
© O.T.Lee
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2. For each of the following graphs, sketch on the same set of axes, the graph of y = f7'(x).
(a) (b)

0T

10+ 104

(©) (d)

3. For each of the following graphs, sketch on the same set of axes, the graph of y = 1/ £ (x).
(a) (b)

y y
101 10+

.10 4+

(©) (d)

101 101

104
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4. For each of the following graphs, sketch on the same set of axes, the graph of y =

(a)

10+

-10 4 10

(©

10 -+

1
fx)
(b)
y
101 !
} T X
10 4 10
w0l
(d)
y
T > X
10 L 10
.10..-.

5. Without using a CAS/Graphic calculator, sketch the graph of y = f(x).
On the same set of axes, sketch the graph of y= 77'(x).

(@ y=x+3
() y=+x~-1

(&) y=2 -4

1
@y A

) . [ mx 5 5
i) y=5sin| — | for—-= <x< =
@) y (5) 5 5

() x+y=>5
@) y=2- Jx+1
@ y=4-10"%

1
h) y=5-
M) » 2x-10

)] y=5cos(—?) for0<x<

>
2

6. Without using a CAS/Graphic calculator, sketch the graph of y = f(x).
On the same set of axes, sketch the graph of y = 1/ f (x).

(@ y=4-x
(c) y=~2-x

() y=1In(4-x)
(8)y=x(x-2)(x+2)

(i) y=4sin(£4x—) for-8<x<8

(b) 2x+5y=10
d) y=2+27*
® y=Gx-2)x+4)

x+3
(h) y=
x—-3

)] y=3cos(-§£) for 6<x<6
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5.3 Graphs of Absolute Value Functions y = | ) |

e The absolute value of a real number is the “magnitude” of the number.
. |5]=5 e |-5l=5
e Thatis, for xeR:
-x ifx<0
|x| = . .
x ifx >0

o Ify= | f(x)], then as a piecewise defined function:
B {— f(x) over the interval for which f(x) <0

f(x)  over the interval for which f(x) > 0

e The graph of y = | Fl may be obtained from the graph of y = f (x)
by reflecting about the x-axis any part of y = £(x) that is below the x-axis.

Example 5.3
Show that the inverse of f(x) = |x+2 | is not a function.
Solution:

FO)=f(-4)=0

Hence, f(x) is not a one-to-one function. Therefore, its inverse is not a function.

Example 5.4

Rewrite the following functions as piecewise defined functions.

@ f)=2x=-3 () f(x)=(x-2)x+3)

Solution:
(@ f(x)<0 = 2x-3<0
x< i
2
—(2x-3) x< %
Hence, f(x) = 3
2x-3 xZE

b)) f®)<0 = EF-2)x+3)<0
-3<x<2
—(x-2)(x+3) 3<x<2

Hence, f(x) = { (x=2)(x+3) x<-3, x>2
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05 Sketching Techniques

Given the sketch of y = f(x), sketch the graph of
y=lrel.

Solution:

y=1f(x)|

Note:

Example 5.6
Given the sketch of y = f(x), sketch the graph of :
1
(”yszl(myzﬁﬁﬂ'
Solution:
y
y= Iflx) 5 -
/
A pad I—
aly
/ =7

© O.T.Lee

the inverse of y = | fx) | is not a Jfunction.

The graph of y = f (x) is below the
x-axis for <4 <x < 2. This part is
reflected about the x-axis.

o In this example, y = f (x) is a function. But as the graph of y = | f | Jails the horizontal line test,
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Example 5.7

Without the use of a calculator, sketch y = | in (x+3) |

Solution:
y
S
y=|mic+3)|
et \/ + $—t—i— X
«5 -1
o First sketchy = In(x + 3).
! ® Reflect about the x-axis any part
] of the curve that is below the
s+ X-axis.

5.4 Graphs ofy=f(|x|)

o Ify=f (| X I), then as a piecewise defined function:
_[fx) x<o0
f(x) x=0

e The graph of y=f (| x ) may be obtained from the graph of y = f(x) as follows:
e Parts of y = f(x) to the right of the y-axis remain unchanged.
o Parts of y = f(x) to the left of the y-axis are completely removed and
replaced by the reflection of the parts of y = f(x) to the right of the y-axis.

Example 5.8

2
Let f(x)=x +2x—1.
(a) Determine the rule for (| x[). Hence, rewrite f (x ) as a piecewise defined function.
(b) Hence, show that the inverse of f(|x[) is not a function.

Solution:

2
(a) Rule for F(xD=|x|"+2|x| -1.
As a piecewise defined function:

2_.
f(|x|)= {x 2x+1 x<0

x2+2x—1 xZO'

®) fd2h=rd-2h=7.

Hence, f (x l) is not a one-to-one function. Therefore, its inverse is not a function.
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Example 5.9
The sketch of y = f(x) is given below. Y \
Sketch the graphs of: (a)y= |f()| ®) y=7£(lx)). |
Solution: \
N
(a) e x
y T~
N
\\
— N
ee— x o Parts of y =f (x) above the
I | N l x-axis remain unchanged.
\ y= 1foN o Parts of y =f (x) below the
x-axis are reflected about the
\ X-axis.
!
i
(b)
y
y={f(ix1)
/AN
e Parts of y = f (x) to the right of
the y-axis remain unchanged.
o Parts ofy =f (x) to the left of
b ——— x the y-axis are completely
removed and replaced by the
reflection of the parts of
y =f(x) to the right of the
y-axis.
Example 5.10

Without the use of a calculator, sketch y = f( | x| ) where f(x)=(x+ 1)(x — 2).
Solution:

M ' \ — i x o Firstsketchy = (x + 1)(x —2).
\S\/ o Remove the part of the curve
that is to the left of the y-axis.

o Reflect remaining curve about
the y-axis.

© O.T.Lee

71



Mathematics Specialist Units 3 & 4

Exercise 5.2

1. The sketch of y = f(x) is given below.
Sketch the graphs of ) y = |f()| (i) y=£(lx]).

(2) (b)

y y

(©) (d)

(e) ®

2. For each y = f(x) as given below:
(1) write in piecewise form y = | fx | .
Hence, or otherwise, without the use of a calculator, sketch y = l fx) l.
(if) write in piecewise form y = f( | x| ).
Hence, or otherwise, without the use of a calculator, sketch y = f( | % | ).

@y=2x+5 (®)y=3-x ©y=@E+3)x-3) @y=x -3x-4

(e)y=2x—4 O y=hkx+2) (g) y =sin (x) (h) y = cos (x)

@ y=va—x-2 (hy=e2-2 ®y=— I y=——+2
x-2 2+x
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*3. Given the sketch of y = £(x), sketch the graphs of (i) |y]| =f() @i |yl =lrml.
(a) (b)

y y

(© (d)

*4. Given the sketch of y = £ (x), sketch the graphs of () |y| =£(1x|) Gi) |y =lr(xD].
(a) (b)

14 y

/ |

(© (d)
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5.5 Rational Functions

e A rational function takes the form f(x) = Px)
Q(x)
where P(x) and Q(x) are polynomials.
e f(x)= % is a proper rational function if the degree of the polynomial
X
P(x) is strictly less than the degree of the polynomial Q(x).
e For the curve with equation y = Px) :
O(x)
« the vertical asymptotes (poles) correspond to the roots of O(x) = 0.
« the horizontal asymptote corresponds to lim Pix) and/or lim P

X—>+0 Q(x) X—>—00 Q(x) ’
o if P(x) and Q(x) share a common factor (x + a), then the curve has a “hole”
or discontinuity (singularity) at x = —a.

Example 5.11

Find the horizontal and vertical asymptotes for the following:

_ 1 _ 2x _ —3x B 45>
@ry=553t ®Ory= Oy ey YT e

Solution:

(a) Denominator 2x-3=0 = x=1.5
Hence, equation of the vertical asymptote is x = 1.5.

For the horizontal asymptote: lim f(x) =4 and lim f(x) =4

X—>—© X —>-+0

Hence, the equation of the horizontal asymptote is y = 4.

(b) Equation of the vertical asymptote is x = 2.

2x . . . . . C e _ 4
—— is an improper rational fraction; using polynomial division: = - +2
x+2 x+2 x+2
For the horizontal asymptote: lim f(x) =2 and lim f(x)=2
X —»—00 X—>+o0

Hence, the equation of the horizontal asymptote is y = 2.

Alternative Method for finding the horizontal asymptote

The dominant term in the numerator is 2x

while the dominant term in the denominator is x.

Hence, lim f(x) = Ilim 2 =2.

X—>—00 xX—>—o0 X

=> Equation of the horizontal asymptote is y = 2.
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(c) Equation of vertical asymptotes are x =—2 and x = 2.

Using the dominant term method: lim f(x) = lim _—32—{ =0.
X—>—00 X—>—© x
Hence, equation of the horizontal asymptote is y = 0.
(d) Equation of vertical asymptotes are x =—4 and x = 3.
3
Using the dominant term method: lim f(x) = lim ix?_ —> —0
X —>—00 X—>—0 x
3
and lim f(x) = lim fle — +o0
X4 xX—>+w x

The limit in each case does not exist. Hence, there is no horizontal asymptote.

Example 5.12
) 2x 22-x)(x+3
Without the use of a calculator, sketch: (a) y= ————— (b) y= 2Q2=x)(x+3)
(x—4)(x +2) x2 -4
Solution:
(@) y e Obvious points: x=0 = y=0
4.1 ) e Vertical asymptote: x=-2,4
2
e Horizontal asymptote: y= lim -—;ﬁ =0.
x—>-0w0 X
s-—
¢ Behaviour of curve in the
neighbourhood of the asymptotes
o= d t = x

P - T s M . Asx—>4+,y—->—oo

Asx—=>4 ,y >+

’ e Asx—> -2,y -
+

Asx—>-2 ,y—+o

v " e Asx—>—w,y—0
+

Asx — +owo,y >0

(b) 2(2-x)(x+3)

y o Simplify equation: y= >
4.1 x4
_ 2(2-x)(x+3)
i (x=2)(x+2)
T —2(x+3)
x intercept L
=— 2
(=0 \} ] (X+2) *#

M e Asx;é2,thepoint(2,~%)isa“hole”.

[It is a point of discontinuity/singularity.]
Point of Discontinuity Obvious points: x=0 = y=-3
(2_5] y=0 = x=-3
2 Vertical asymptote: x=-2

. .2
Horizontal asymptote: y= lim -,

x—> -
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Example 5.13

The sketch of y = w is given in the
ex” +d
accompanying diagram. Find the values of the

constants a, b, c and d, where a> 0, 5> 0 and ¢ > 0. prorzpntal Asymptote

(0,4)

Solution:

\
‘{ — . PO e
The curve has zeros at x = -2 and 2. 5 /
(x+2)(x-2) (-2,0) [ (2,0)
ex? +d
Thatisa=2and b =2.

= Y=

104

The curve as a vertical intercept at y = 4.
—4

Hence, =— = d=-1.
d
The curve has a horizontal asymptote with equation y = 1.
2
= lim 2 =1
X—>+© cx2
c=1.

Hence,a=2,b=2,c=1andd=-1.

Example 5.14
. . . ax+b .
Consider the curve with equation y = . Find the constants a, b and ¢, where a > 0,
xX+c
if the curve has an asymptote with equation x = -2, a zero at x = 2 and an intercept at (0,-2).

Solution:

x=-21s an asymptote: = c¢=2

Hence, equation of curve is y= ax+b

x+2
Whenx=0,y=-2 = gz_z = b=-4
Whenx=2,y=0 = 2"4_4 =0 = a=2.

Hence,a=2,b=—-4and c=2.
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Example 5.15
4x-5
x° -1

(a) find the intercepts and asymptotes of the curve.
—k(ax+b)(cx+d)

(-1
(c) find the coordinates and nature of the stationary points of this curve.
(d) sketch this curve and indicate clearly the intercepts, asymptotes and stationary points.

Consider the curve with equation y = . Without the use of a calculator:

(b) express %in the form , where a >0 and ¢ > 0.

Solution:
_4x-5_  4x-5
x2 -1 (x=Dx+1)

(a) When x =0, y=>5. Hence, the y-intercept has coordinates (0, 5).

Wheny=0,x= % . Hence, the x-intercept has coordinates (% , 0).

Vertical asymptotes has equations x=-1and x = 1.

. . . 4
Horizontal asymptote has equation y = lim o

X—>-+00 x2

dy_ 4> -1)—-2x(4x-5)

(b)
_ —4x? +10x-4 _ 2Q2x-1)(x-2)
(x? 1) (x? —1)?
. . dy
(c) For stationary points, o =0
Hence, 2x-Dx-2)=0 = x=%,2

When x = %,y=4 and whenx=2,y=1.

: 1 x | 17| L |1t
Use the sign test for x = 5 > 2 | 3
Hence (E , 4) is a minimum point. dx
Use the sign test for x = 2 x || 2 | ot
Hence, (2, 1) is a maximum point. &
ha'dl + 0 —
dx
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(d) The sketch of the curve is given below.

y iIntercept
{0,s)

Local Minimum
1 Local Maximum

(“,4) ) T ‘211)

2 1
. 1 /
T t t + + + t > X
- I :
X Intercept
4 §,o
5 4

-10 4

Example 5.16
The rational function f(x) has the following properties:
SED=73)=0, f(0)=-3, f'(x) >0forx>1, f'(x) <0 forx<1,

lim f(x)= lim f(x)=1, lim f(x)—> - and lim f(x)— —o.

X—>—0 X—>+00 x=1" r1"

Sketch the graph of y = f(x).

Solution:
fEDH=£3)=0 = x-intercepts are (-1, 0) and (3, 0).
f(0)=-3 = y-intercept is (0, —3).
lim f(x)= lm f(x)=1 = Horizontal asymptote has equation y = 1.
X—>—®0 X—>+0

lim f(x)=-c0 and lim f(x)=-0 = Vertical asymptote has equation x = 1.

+

x—>1 x—1
y
The sketch of y = f(x) is given in the 0t
accompanying diagram. 1
54
< ! Lo 3 ./':’T—:_ + : > X
5 10

Note: 4
e x =] is a double asymptote. -104&
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Exercise 5.3

1. For each of the following rational functions, without the use of a calculator:
(i) state the coordinates of the intercepts (where they exist)
(ii) state the equations of the horizontal and vertical asymptotes
(iii) hence, sketch the graphs of these functions.

_x+3 _4-2x _ 6-2x _ 2x-8

@ y= 2 0) y= 2 ©y=22 @ y= 22

_ 4x __ 3x+15 _ 3x+6 _ 6x+9

© =Gy P G 0ars © Y ooy WY 2
P(x)

2. The graphs of the rational functions y = a—) where P(x) and Q(x) are both linear factors
X

are drawn below. In each case:

(i) identify the equation of the curve (i) sketchy = | f(x)| (iii) Sketchy= fz 3
x
@ (b) y (©)
, 104 y
wor 1 (2.0 i
(-z.o)\ . / /(o,n
T —. x * : 5‘ * k\ + x
10 7 s w s'gtj"” = 5
N
(0,-1) * 16 i (l 0]
2
a0+ i

ax+b

3. The sketch of y = f(x) = 5 is given in the

c—x

accompanying diagram.

(a) Find the values of the constants a, b and ¢
where a > 0.

(b) Sketchy = | f(x)|.

-1
(c) Sketch y 0 Js

4. The sketch of y =
cx” +dx

accompanying diagram.
(a) Find a possible set of values for the constants a, b,

. . . 4
is given in the . LU

candd. ; e,
(b) Sketchy= | f(x)]. : [\(] :
1 5,
Sketch y = —— :
©) Sketehr= 73
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5. The sketch of y = Lc_z;x)(_x+2 is given in the 1

n

(x+c)(x+d)
accompanying diagram. {-1,0) (4,0)
(a) Find the values of the constants a, b, ¢ and d, N /
wherea>0andc>d. TR
(b) Sketchy = | F(x)]. NS
(c) Sketchy= ——. (3]
/@

6. The curve y = wx+b
cx +

Find a possible set of values for a, b, ¢ and d.

has asymptotes with equationx =2, y = —% and a zero at x = 1.

7. The curvey = _ @th has a zero at x = % and a y-intercept at (0, %)

(x+c)(x+d)
asymptotes with equations x = 1 and x =-3. Find @, b, c and d, where ¢ > d .

w hasa zeroatx=1

8. The curve y =
2x+c)(x+d)

, a y-intercept at (0, %) and asymptotes

with equations x =2, x = —% and y= —. Find all possible sets of values for a, b, cand d.

1
2

9. The curve y = (@x +b)(cx +d) has a zero at x = 1 and a y-intercept at (0, % ), an

(x+e)(x+f)
asymptote with equation y = 1 and poles at x = 3 and x = -3, Find a possible set of values
for the integers a, b, ¢, d, e and f, where e > f.

2

10. Consider the curve with equation y = . Without the use of a calculator:

2
x“ -4
(a) find the intercepts and asymptotes of this curve.
(b) show that Q:_zax_z , giving the value of a.
dx  (x“—4)
(c) find the coordinates and nature of the stationary points of this curve.
(d) sketch this curve and indicate clearly the intercepts, asymptotes and stationary points.

11. Consider the curve with equation y = . Without the use of a calculator:

x“+1
(a) find the intercepts and asymptotes of this curve.
dy a—bx? .
(b) show that =—=———+— | where a > 0, giving the values of a and b.
dx (x2 + 1)2

(c) find the coordinates and nature of the stationary points of this curve.
(d) sketch this curve and indicate clearly the intercepts, asymptotes and stationary points.
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12.

13.

14.

15.

16.

17.

2
. . : 2x“ +800 :
Consider the curve with equation y = X 7977 Without the use of a calculator:

X

(a) find the intercepts and asymptotes of the curve.
2

dy ax“+b

(b) show that — = 3

x
(c) find the coordinates and nature of the stationary points of this curve.
(d) sketch this curve and indicate clearly the intercepts, asymptotes and stationary points.

, where a > 0, giving the value of a.

x2+3

Consider the curve with equation y = . Without the use of a calculator:

x“+3x
(a) find the intercepts and asymptotes of this curve.
(b) show that P S(X#)Lx;i, giving the values of g and .
dx (x“+3x)
(c) find the coordinates and nature of the stationary points of this curve.
(d) sketch this curve and indicate clearly the intercepts, asymptotes and stationary points.

Sketch the graph of the rational function f(x) given that it has the following properties
e f(O)=f'(0) =0

e f'(x)>0forx<-2and-2<x<0 o f'(x)<0for0<x<2andx>2
e lim f(x)= lim f(x) > -0 e lim f(x)= lim f(x)o—>o0
x—=2" x—>-2" x—~2" x—2"
e lim f(x)= lim f(x)=1
X —>»—00 X—>+0

Sketch the graph of the rational function f(x) given that it has the following properties:

e f(0)= f'(0) = f"(0) =0 e f'(x) <0 for all values of x except 0 and = 3
e lim f(x)= lim f(x) >— e lim f(x)= lim f(x) >

x—-3" x—3" x—3* x—-3"
e lim f(x)= lim f(x)=0

X—>—0 X—>+0

Sketch the graph of the rational function f'(x) given that it has the following properties

e f()=f(-1)= f'(0) =0 o f'(x)>0forx<0
e f'(x) <0forx>0 e lim f(x)= lim f(x)=-1

Sketch the graph of the rational function f'(x) given that it has the following properties

. £(0)=0, /'(0) =f'(§) -0 X f'(x)>0for0<x<1and1<x<%
e Fix)<0forx<0, 2 <x<2andx>2 o lim f(x)= lim f(x)=1
3 X—>—c0 X+
e lim f(x)= lim f(x) >0 e lim f(x)= lim f(x) > -
x—1 x—2F x—>2" x—1*
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5.5.1 Rational functions with oblique asymptotes

. P
O(x)
than the degree of the polynomial Q(x).

is a proper rational fraction if the degree of the polynomial P(x) is strictly less

e Consider a rational function of the form f(x) = g—gx)- +ax+b
x
P(x) . . .
where —Qﬁ is a proper rational fraction and the constant a # 0.
x

e The vertical asymptotes (poles) correspond to the roots of Q(x) = 0.
o This function may or may not have any horizontal asymptote.

« This function has an oblique asymptote with equation y = ax + b.

e« ASx > + o0, as ﬁ(i) is a proper rational fraction, P(x)
O(x) O(x)

and f(x) > ax+b.

—0

+ Asx — + o, the curve “hugs” the line with equation y = ax + b.

Example 5.17
. x243x-4
Consider the curve with equation y = 1 Without the use of a calculator:
x+
(a) express y= % +ax+ b where P_Ex% is a rational proper fraction and a # 0.
x x

(b) state the coordinates of all intercepts and the equations of all asymptotes of this curve.
(c) sketch this curve, indicating all essential features.

Solution:
(a) Using polynomial division: x+2
2 3 3 ) 2
Hence, y = X +3x-4 -6 +x+2. x+1|x"+3x—4
x+1 x+1 2
X" +x
2 2x—4
. . X“+3x—-4 _ xx(x+1)+2x(x+1)-6
Or by inspection: =
ynsp x+1 x+1 2x+2
E (x+D(x+2)-6 ~6
x+1
-5 +x+2.
x+1

(b) When x =0, y=-4. Hence, the y-intercept has coordinates (0, —4).
2
Wheny=0,x +3x-4=(x+4)(x-1)=0 = x=-4,1
Hence, the x-intercept has coordinates (—4, 0) and (1, 0).

Vertical asymptote has equation x = —1.
Oblique asymptote has equation y =x + 2.
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(c) The sketch of the curve is given in the
accompanying diagram.

i
2\
bblique Asymptote
y=x +2

Exercise 5.4

1. For each of the following curves y = f(x), without the use of a calculator:

(i) express y= P + ax + b where S—Ex% is a rational proper fraction and a # 0.
X
(i) state the coordinates of all intercepts and the equations of all asymptotes

(iii) sketch this curve, indicating all essential features.

p— — 2 — ) 2_.
@) y= (x+1)(x1 2) (b) y= 2-x)(x+3) © y= x“+3x-4 d) y= x“=5x+4
_ x+2 x+2 x—2

2. For each of the following curves y = f(x), without the use of a calculator:

(i) express y = % +ax + b where P g;

is a rational proper fraction and a # 0.

(i) state the coordinates of all intercepts and the equations of all asymptotes
(iii) state the coordinates and nature of the stationary point(s)
(iv) sketch this curve, indicating all essential features.

2 2 2 3

x“+1 —x“—x-1 x“ =3 X
@ y= ) y= "——"— (@ y= *d) y=—

X x-2 x° =1
x3+bx2+cx+d . . . 3 4 4
*3. The sketch of y = is given in the 15
x+n L0)
accompanying diagram. (-1,0) 10 ’

(a) State the equation of the oblique asymptote. \ s /

(b) Find the values of the constants b, ¢, d and n. \ /

(c) Sketchy=| f(x)]. SIS o5~ \i
(0,-1)

-
./-\ -10
-15
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06 VectorsI

6.1 Vectors in Three Dimensional Space

e The accompanying diagram shows the x-y-z axes in
three dimensional space. The axes are mutually
perpendicular to each other. In this book, the
convention used in labelling the axes follows the
right-hand rule.

o Straighten all your fingers keeping them together
(with the thumb perpendicular to the fingers) so that
the open palm is aligned with the x-axis and the
fingers point in the direction of the positive x-axis.

* Wave your fingers with a 90° turn (without moving
your thumb) so that the open palm is now at right
angles to the x-axis. The direction of your fingers is
the direction of the positive y-axis.

o Move your hand in the direction of your thumb.

This is direction of the positive z-axis.

e As in the case of the x-y axes, the point of
intersection between the x, y and z axes is called the
origin.

e Each point in space can be described by a set of three
numbers (x, y, z). For example, (1, 2, 3) locates the
position of a point P which is 1 unit, 2 units and 3
units respectively in the direction of the positive
x-axis, positive y-axis and positive z-axis.

e If the origin O has coordinates (0, 0, 0) and the point
P has coordinates (1, 2, 3), then the position vector of
P, denoted OP =i+ 2 j + 3 k where i, j and k are unit
vectors in the positive x, positive y and positive z
directions respectively.

1
Alternatively OP=<1,2,3>0rOP=| 2
3

e Note that u =<1, 2, 3 > represents a free (floating)
vector parallel to OP.

¢ Using Pythagoras Theorem, the magnitude of OP,

loP| = V12+22+32 = 14.
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6.1.1 Magnitude and Orientation

e In general,ifu=<a,b, c>,
« then the magnitude of u is given by

lu| = Vo> +b*+c* .
o The orientation (or direction) of u is

described using direction cosines:

_ _a b c
<cos a, cos f3,cosy>=<

2

| u

>
u| |l
X

where a, B and y are the angles # makes
with the x-axis, y-axis and z-axis respectively.
This, however, is beyond the scope of this book.

6.2 Algebraic & Geometrical Properties of 3D vectors

e The algebraic and geometrical properties of 2D and 3D vectors are similar.

e The vector ka where k is a constant, is a vector parallel to a but with a magnitude
that is Ik‘ times that of @. Thatis lkal = || x lal
e If k>0, then ka and a are in the same direction.
o If k<0, then ka and a are parallel but in opposing directions.

: . 1
e Unit vector parallel to @, a = |—‘a .
a

o Giventhatu=agi+bj+ck and v=pi+qj+rk,then:
eutv=(atp)it(bxtqgj+(ctnrj
o the scalar productis: (ai+bj+ck).(pi+tqgj+trk)=ap+tbg+cr

e Properties of the scalar product:
2
o u.u=|ul cu.v=v.u
o Au.pv=Ap(u.v) e (utvy.w=u.wtv.w

ew.(utv)=w.u+tw.v e(etf).(g+h)=e.g+e.h+f.g+f.h

e Consider two vectors # and v, inclined at an angle of 6 to each other.
e The scalar product #.v= lulx|v|cos 6.
u.v
e COSO= —.
<[}

« uand v are perpendicular < wu.v=0.
e The scalar projection of wontov=wu. v.
« The vector projection of # onto v, proj, ¥ = (lulcos0) v =(u.v)v.
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Example 6.1

In the accompanying diagram, draw and indicate the line
segments representing the vectors:
(a) utv d) u-v.

Solution:

Note:

In vector addition, the arrow
that completes the triangle
always points from the tail of
the first vector to the tip of
the second vector.

Note:

In vector subtraction, the
arrow that completes the
triangle always poinis to the
first vector, which in this
case is u.

© O.T.Lee 86



06 Vectors I

Example 6.2

Given that AB =<6, 5, 10>and AC =<3, 11, 1 >, find the position vector of B if the
position vector of C is < 10, -3, 4 >,

Solution:

AC=0C-0A = <3,11,1>=<10,-3,4>-0A = O0A=<7,-14,3>
AB=0B-0A = <6,5,10>=0B-<7,-14,3> = O0OB=<13,-9, 13>
That is, the position vector of Bis <13, -9, 13 >.

Example 6.3

The points A, B and C have position vectors <-1,2,0>,<2,-5,3>and <0, 4, -3 >
respectively. Find: (a) BC (b) |AB| (c) the distance between A and B.

Solution:

(2) BC=0C-0B=<0,4,-3>-<2,-53>=<-2,9, -6 >.

(b) AB=0OB-0A=<2,-5,3>-<-1,2,0> [[z5 311,203 <
=<3,-7,3> [e -7 3]

norm¢[3 -7 3D

Hence, |AB| = /32 +(=7)> +3? = J67. ver

(¢) The distance between A and B = | AB , = J67.

Example 6.4

The points P, Q and R have position vectors <5, -2, -1>,<-3,4,3>and <-3,6,1>
respectively. Find:
(a) | PQ | (b) |PR| (c) avector parallel to PQ but with the same magnitude as PR.

Solution:

(a) PQ=<-3,4,3>-<5,-2,-1> {TTI RAD AWTO REAL ||
=<-8,6,4>. 3 ST TS ¢ 4]

Hence, |PQ| = /(=8)2 + 6> +4*> =229 . nom([-5 6 4) 229
[ 6 1]s 2 -1 [ 8 2]

(b) PR=<-3,6,1>-<5,-2,-1> nom({-8 & 2]} 233
=<-§,8,2>. 229 unitvi{-3 8 2])
Hence, | PR| = /(-8)* +8 +2? =24/33. ['8' 957 8957 24957
33 33 33
599

(c) Unit vector in the direction of PR
1

=___<-8,8,2>.
233 >
) . 1 J957
H d vect 229 x <-8,82>=""<_8 8 2>,
ence, réquired vectior 1s 5 \/ﬁ 8, , 33 s Oy
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Example 6.5
Find a and b if that the points P (a, 5, 10), Q (3, 8, 5) and R( 5, -1, b) are collinear.
Solution:
3 a 3-a 5 a 5-a
PQ=0Q-0OP=|8|—-|5=| 3 PR=OR-OP=|-1|(-|5|=| -6
5 10 -5 b 10 b-10
Since, P, Q and R are collinear, then the line segments PQ and PR must be parallel.
3—-a 5-a
That is PQ = APR.. Hence = 3 |=A -6
=5 b-10
Comparing j components 3=—6A = A= —%
. 1 11
Comparing i components = 3 -a= 5 S-a) = a= 3
Comparing k components 5= ——%— b-10) = b=20

Example 6.6

The points A and B have position vectors < 3, 5, 10 > and < 10, -6, 20 > respectively. Find
the position vector of the point K if K divides the line segment AB in the ratio 3:1.

Solution:
From the given sketch:

3 3 parts 1 part

AK= ZAB = 4AK=3AB

4 (OK - 0A) =3 (OB - OA)
| = OK= i— (OA +30B)

OK=% [<3,5, 10>+3<10,—6,20>]=% <33,-13,70>

Example 6.7
Find the acute angle between <2, 3,4 >and < -3, 5, 2 >.

Solution:

Let the angle between the two vectors be 0. p——
angle¢[2,3,41,[-3,5, a
Then, cos 6 = <2,3,4>.<-352> = 17 59.1959
<2,3,45]<-3,5,2> 2938
= 0=592"
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Example 6.8

Find a vector of magnitude 20 which is perpendicular to <4, 5, -2 >,

Solution:

<2,0,4>is perpendicular to <4, 5,-2>as<2,0,4>.<4,5 -2>=0.

Unit vector parallel to <2, 0,4 > is 1 <2,0,4>

V20

. 1
Hence, required vector = 20 x

<2,0,4>
0

=420<2,0,4>.

Note:

o There are an infinite number of vectors that are perpendicular to < 4, 5, =2 >.

Example 6.9

Givenu=<4,0,2>andv=<3, \/3,2>.

(a) Find the scalar projection of # onto v. (b) Find the vector projection of # onto v.
(c) Find the vector rejection of # onto v.

Solution:
(@) v=<3,3,2> = ﬁ=§<3,\/§,2>.
= Scalar projection of u ontov=wu. v
=<4,o,2>.%<3,\/§,2>
=4,
(b) proj,u = (u- )
=4x%<3,\/§,2>
=<3,+3,2>.

(©) rej,u=<4,0,2>-<3+3,2>
=<1,-+/3,0>.
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Exercise 6.1

1. In the accompanying diagram, draw and indicate the line segments representing the
vectors u +vand u —v.

(@) > (b)

S

2. Point A has position vector 6i—4j+ 8 k. AB=4i+7j—6k. Find the position vector
of: (a) the point B. (b) the point C given that 2AC = BA.

3. The position vectors of P and Q are < -2, 3, k> and <4, -5, 10 > respectively.
(a) Find the value(s) of k if |OP| =20. (b) Find the value(s) of k if |PQ] = 20.

4. Given that PQ =<8, -5,2>and PR =<4, 1, -7 >, find the position vector of Q if the
position vector of R is <4, -2, -1 >.

5. The points K and L have position vectors <0, 3, -4 >and <5, 0, 3 >.
(a) Find a unit vector parallel to KL.
(b) Find a vector in the same direction as LK but with a magnitude of 10.

6. The points A, B and C have coordinates (1, 1, 2), (0, 1, —1) and (1, 0, =2) respectively.
(a) Find a vector that is parallel to AB but with the same magnitude as AC.
(b) Find a vector that is parallel to AC with magnitude half that of BC.

7. The points E, F and G have position vectors <-2,5,3>,<0,0,2>and<-3,5,7>
respectively.
(a) Find a vector that is the same direction as EF but with the same magnitude as FG.
(b) Find a vector that acts in a direction opposing EG and with a magnitude of 10.

8. Find in exact form a unit vector parallel to u# = < -k, k, 2k >, where £ > 0.
Hence, find in exact form a vector
(a) parallel and in the same direction as # with magnitude 5
(b) parallel but in the opposite direction to # with magnitude 10

9. Giventhata=i—k and b=-j+ k, find two vectors parallel to a + 2b with magnitude
equal to that of b.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Giventhata=2i+5jand b=-3 i+kk, find kif |a + b =50.

Givenu=<1,1,-2>v=<0,k —k>and w=<0, -k, 0 >, find the exact value(s) of k
iflu—v+2wl| = |ul.

Givenu=<0,1,-2>v=<-1,0,-2>and w=<1, 1,0 >, find a and § given that:
(a) autPv=w b) av+Bw=u

Prove that the vectors <3, -2, 5 > and < 12, -8, 20 > are parallel.

Find the relationship between a and f if that the vectors < 1, a,, 2>, <2, -3, 4 > are
parallel.

The position vectors of A, Band Care <5,7, 10>, <q,4,>and <2, 0, B >
respectively. Find the a and B if AB is parallel to OC.

The position vectors of K, Land M are <1,3,5>,<5,7, a>and<—4,-2, >
respectively. Find the relationship between a and B if K, L and M are collinear.

Find the position vector of K if it divides the line segment joining the points with the
following position vectors in the stated ratio:
(a) <1,-1,2>and<-5,3,6>;, 1:2 (b) <—4,0,8>and<0,8,12>; 3:2

The point with position vector < 0, 2, 5> divides the line segment AB in the ratio 1:4.
Use a vector method to find the position vector of B if the position vector of A is
<8,6,-10>.

The point with position vector <4, 1, 5 > divides the line segment PQ in the ratio 3:2.
Use a vector method to find the position vector of P if the position vector of Q is
<-2,5,10>.

Use scalar products (where appropriate) to find the acute angle between the vectors:
(a) <0,3.0>,<3,0,0> (b) <1,1,1><-1,0,-1>
() <-2,1,1><0,4,-3> (d) <-1,2,4>,<2,0,3>

Determine if the following pairs of vectors are perpendicular, parallel in the same
direction, parallel in opposing direction or otherwise.

(@ <1,1,-7>,<7,7,2> (b) <1,3,1>,<8,24,-8>

(c) <2,0,-4>,<-1,0,2> (d) <3,-2,2>,<9,-6,6>

Use scalar products (where appropriate) to find a vector:

(a) of magnitude 5 and perpendicular to <0, -2, 3>

(b) of magnitude 100 and perpendicular to <3, 5, -3 >

(c) of magnitude 10 and perpendicular to <1, 5, =2 > and parallel to < 10, 0, 5 >
(d) of magnitude 20 and perpendicular to < 1, 3, —8 > and parallel to < 10, 10, 5 >.
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23.

24.

*25.

*26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Letu=<1,q,2>andv=<-1,b,-2>.
Find g and b if | u| = | v| and « and v are perpendicular.

Letu=<a,b,3>andv=<4,qa,3 >
Find g and b if |v| = | u| and u and v are perpendicular.

Use a method involving scalar products to find a and b if the acute angle between
<1,0,1>and<a, b,0>1is 60°. Hint: Let < a, b, 0 > be a unit vector.

Use a method involving scalar products to prove that no vector of the form <a, 0, b >
is inclined at angle of 60° with the vector < 1, 2, 0 >, where a and b are real numbers.

Givenu=<1,11>and v=<2, 2, —1 >. Without the use of a calculator, find the vector
projection of: (a) u onto v (b) v onto u.

Givenu=<0,1,2>and v=<2, -1, -2 >. Without the use of a calculator, find the
vector projection of: (a) u onto v (b) v onto u.

Givenu=<1,2,0>andv=<3,2, \/5 >, Without the use of a calculator, find the
vector rejection of u# onto v.

Givenu=<-2,-2,1>andv=<0, 2, 3 >. Without the use of a calculator, find the
vector rejection of v onto u.

Giventhat u=<1,0,1>+<0, -1, 0 >, find the vector projection and rejection of u
onto: (a) <2,-2,2> (b) <-5,5,-5>.

Giventhat u=<2,1,3>+<3, -9, 1 >, find the vector projection and rejection of u
onto: (a) <4,2,6> (b) <-3,9,-1>.

Given that the vector projection and rejection of # onto vy are <3, 5,-2>and <2,0,3 >
respectively, find the cosine of the angle between u and v.

Given that the vector projection and rejection of # onto vare <5,1,-2>and <1, 11, 8>
respectively, find the cosine of the acute between u and v.

The vector components of u parallel and perpendicular to v are <1, 2, 2 > and
<2,-2,1>respectively. Without the use of a calculator, find the cosine of the angle
between u and v.
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6.3 Vector Cross Product

a 4
o letu=|b|andv=|gqg

C s

e The cross product between u and v is a vector that is perpendicular/normal to both
u and v. The direction of the cross product is determined using the right hand rule.

e The cross product is represented by # x v and

is given by:
Determinant of matrix formed
b by the j and k components of
1 A—/ uandv.
c r
a
p a Negative of determinant of
blx|lqgl|=]|- | matrix formed by the i and k
P r c r components of u and v.
4P D f Sformed
* eterminant of matrix forme
b g \ by the i and j components of
u andv.
br—cq
=| —(ar—cp)
aq-bp
o Clearly from the x-y-z axes:
ixj=k jrk=i kxi=j

e The vector cross product is anti-commutative.
That is: uxv=—(vxu).

o The vector cross product is distributive over vector addition .
That is: ux(+tw)y=uxv+uxw.

. | u x v| = | u | | v l sin 6, where 0 is the acute angle between u and v.
[The proof of this result is required in Exercise 6.2, question 16.]

e Clearly, if u is parallel to v, 8 =0 or m and luxv|=0.

That is, the cross product between two parallel vectors is always zero.
« Conversely, if the cross product between two vectors is zero,

then the two vectors are parallel.

¢ The area of the parallelogram defined by the vectors # and v 1s luxvl.
[The proof of this result is given elsewhere in this book.]

o That is, the area of the parallelogram defined by the vectors u and v
is given by the magnitude of the cross product between # and v.

© O.T.Lee 93



Mathematics Specialist Units 3 & 4

Example 6.10
Prove that: (a) ixj=k
Solution:
1 0
(@ ixj=|0|x|1]|=
0 0
0 0
®)jxk=|1|x]|0]|=
0 1
0 1

) kxi=|0|x|0|=

Example 6.11
Provethat i xj=—(jx1i)

Solution:
RHS=—-(jxi)
0 1
== 11|x]0]|=
0
=ixj=LHS

(b)

jxk=i ) kxi=j

1
=|0|=i
0
0
0
0
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Example 6.12

Without the use of a calculator, find a vector of magnitude 50 that is normal to both
<1,3,-1>and<2,1,1>.

Solution:
3 1 1 > -
-1 1 crossPC 3 [« 1|2
1 2 4 -1] |1
1 2 .
T _| 1 1‘ =3 [—3]
-1 1 -5 I
SAxunitvc| -3 |»
31 e
4 4 2642
Hence, required vector = 50x 1 3| = \/% 3. -15-\f2
V50 -25-{2
-5 -5 h]
Note:

o The word “normal” means perpendicular.

Example 6.13
Given<1,-1,1>x<2, m,n>=<1,4,3 > find m and n.
Solution:

<l,-1,1>x<2,mn>=<1,4,3>

>=<1,4,3>
1 n

r 2

1
-1 m
<-n-m-nt2,m+2>=<1,473>

= m=1
n=-2

Example 6.14

The angle between the vectors a and b is 600, find |axb| if |a| =10and || = 3.

Solution:
laxb| =|allb| sin60

=10xJ§x%§=15
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Example 6.15

Letu=<2,2,1>andv=<2,1,2> Without the use of a calculator:
(a) find sin 0, where 0 is the acute angle between u and v.
(b) verify that |u X v| = |u| |v|sin6.

Solution:
@) Cose=<2,2,1>-<2,1,2>
|<2,2,1>(|<2,1,25]
=.—8—
9
2
Hence, sin 0 = 1——(§j =l
9 9
(b) luxv|=1<2,2,1>x<2,1,2> |
_|< 2 1 _2 21 12 2 -
1 20 (1 2|2 1
=|<3=_2=_2>|=\/I’—7-
Ll |9 sin6=3x3x J;—Lm
Hence, |u><v|=|ul|v|sin9
Example 6.16

The sides OA and CB of a parallelogram OABC are congruent to the vector <1, 2,2 >. The
remaining two sides are congruent to the vector < 1, 0, 1 >. Without the use of a calculator,
find the area of: (a) the parallelogram OABC (b) the triangle OAB.

Solution:

(a) Areaof OABC= |<1,2,2>x<1,0,1> |

11
21

2

2 1

|<20
20

, >
2

= | <2,1,-2> | = 3 units

2
(b) Area of AOAB = % x Area of OABC = % units
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Exercise 6.2

L.

2.

10.

11.

12.

13.

14.

15.

Without the use of a calculator, prove that: (a) k xj=—i. (b) ixk=-j.

Without the use of a calculator, prove that:
(@) (20) x(3j)=6k ) G+r)>xk=i-j ()ix(+h=-j+k

. Without the use of a calculator, find a vector that is perpendicular to both:

(a) 2i+j+2kand3i—2j+k (b) —i + 2j — 3k and 4i — 3k.

. Without the use of a calculator, find a unit vector that is normal to both

<1,2,1>and<-1,1,2>.

. Without the use of a calculator, find a vector of magnitude 30 that is perpendicular to

both <1,1,0>and<1,0,1>.

Find the value of the pronumerals in each of the following:
(a) <2,a,3>x<2,b,-1>=<-2,8,4>

b) <l,-l,m>x<np,-1,3>=<-1,1,1>

(¢) <a,b,0>%x<4,-1,2>=<-4,-6,5>.

d <1,-3,2>x%x<gq,-1,b>=<14,10, 8 >.

. The angle between the vectors @ and b is 450, find |ax b| if |a| =20 and 6] =24/2.

. The angle between the vectors a and b is 1500, find |5 a| if |a] =2 and || =4.

The angle between the vectors a and b is 1200, find |ax b| if |a] = /3 and || =12.

Without the use of a calculator, use a vector cross-product to find sin 8, where 0 is the
acute angle between: (a) <2,1,-1>and<3,0,4> (b) <-1,2,4>and<1,-1,3>.

Without the use of a calculator, use a vector cross-product to find cos 6, where 0 is the
acute angle between <3,0,1>and <0, 2, -1 >.

The sides OA and CB of a parallelogram OABC are congruent to the vector <3, -4, 0 >.
The remaining two sides are congruent to the vector < 1, 2, 2 >. Without the use of a
calculator, find the area of: (a) the parallelogram OABC (b) the triangle OAB.

The sides PQ and SR of a parallelogram PQRS are congruent to the vector <1, 2,4 >.
The remaining two sides are congruent to the vector <3, -2, 2 >. Without the use of a
calculator, find the area of: (a) the parallelogram PQRS (b) the triangle PSR.

Prove that: (a) uxv=-vxu
(b) mu % nv=mn(u % v) where m and n are scalar constants.

Prove that: (a) (a+b)xc=(axc)+(bxc) (b) ax(b+c)y=(axb)+(axc)

2 2, 2 2
*16. Provcthat|a><b| :|a| |5 —(a+b) .Hence,provethat‘aXb|=|a||b‘sin6.
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07 Vectors 11

7.1 Vector Equation of a Line

Consider the line L which passes through the
fixed point A and which is parallel to vector d.

Let the position vector of the point A be AN\,
OA =a.

Let R be a variable point on the line L. Let the
position vector of R be OR =r.

Clearly OR=0A + AR. Line L

Since line L is parallel to d, AR must be 0 N *
parallel to d. Hence, AR=2Ad.

Therefore, r=a+ A d.
That is, the position vector of any point on the line L can be written in this form.

R

Consider now the line L in 3D space which "
passes through the fixed point A and which

is parallel to vector d. g \d\
Let the position vector of the point A be

OA =a.

Let R be a variable point on the line L. Let
the position vector of R be OR = r.

Clearly OR=0A + AR .. y

Since line L is parallel to d, AR must be
parallel to d. Hence, AR=2)d.

Therefore, r=a+Ad.
That 1s, the position vector of any point on the line L can be written in this form.

Hence, the vector equation of a line passing through the fixed point with position
vector ¢ and parallel to d is given by:

r=a+id

P4 N -~
\

position vector of any point on line

direction vector of line

A}

position vector of fixed point
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Example 7.1

Find the vector equation of the line passing through the point with position vector
—2i+3j+6kand:

(a) parallel to the vector i— j+2k (b) the point with position vector i + 6 j — k.

Solution:

(a) Vector equation of lineis r=(-2i+3j+6k)+A(i—j+2k)
=(2+A)i+(B3-N)j +(6+2N)k

(b) The required line passes through the points with position vectors —2 i +3 j + 6 k and
i+6j—k.
Hence, the direction vector of the line is of the form
(2i+3j+6k)—(i+6j-ky=-3i-3j+7k
Therefore a possible vector equation of the required line is
r=(2i+3j+6k)+A(-3i-3j+7k)=(2-3N)i+@3-3N)j +(6+7\)k

Example 7.2

Determine if the point with position vector <—1, —6, 5 > lies on the line
r=<-1,2-3>+A<0,-5,5>.

Solution:

Since r represents the position vector of any point on the line, then r = < ~1, -6, 5 > must satisfy
r=<-1,2-3>+1<0,-5,6>

Consider <-1,-6,5>=<-1,2-3>+A<0,-5,5>
Comparing i-components: ~1=-1

Comparing j-components: 2—-5A=—-6 = A=1.6

Comparing k-components: -3 + 5A=5 = A=1.6

Therefore, r = < -1, —6, 5 > satisfies the equation r =<-1,2 -3>+ A1 <0, -5,5>.
That is, the point with position vector <—1, —6, 5 > lies on the given line.

Example 7.3
A line has equation y = 4x — 5. Find the vector equation of this line.

Solution:

The gradient of the given line is 4. Hence, this line is parallel to <1, 4 >.
An obvious point on the given line is the vertical intercept (0, —5).
Hence, the given line passes through (0, —5) and is parallel to <1, 4 >.
Therefore, its vector equation is r =<0, -5>+A <1,4>.

Note:

o Gradient = 4 means one unit to the “right” is accompanied by 4 units “upwards”.
Hence, line is parallel to < 1, 4 >.
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Example 7.4

Use a vector method to find the position vector of the point of intersection between the lines
r=<-1,1,3>+A<1,2,1>andr=<2,1,8>+A<1,-1,2>.

Solution: The two lines are
Rewrite equations as r=<-1,1,3>+A1<1,2,1> fraced as the value of
A changes. However,
=<-1+A,1+2A,3+A> they do not have to
=< S+n<] — > “trace” at the same
and r 2,1,8 w<l,-1,2 pace. Hence, start by
=<2+p,1-p,8+2u> changing the “A” in
At the point of intersection, the second ]‘fguaﬁ"]’{’
_ into “u”. This makes
<-1+A,1+24,3 +}\'>_<2+“a 1 - M, 8 +2u> . sure that the two lines
Comparing components: —-1+A=2+p D trace independently.
I1+2h=1-p (In
3+A=8+2p (11D

—l+ar=2+y
1+2a=1-y

Solve I and II simultaneously: A =1, u=-2.

r
Ay Y
{x=1sy=-2}|'“

Substitute A = 1, p = -2 into (III),
a true statement is obtained.
Hence, the two lines meet at <0, 3, 4 >.

Example 7.5
Use a vector method to show that the lines with equations r=<1,-1,2>+ XA <-2,1, 1 >and
r=<1,1,-1>+A <3, -1, 1 > are non-intersecting.

Solution:
Rewrite equations as r=<1-2A-1+A,2+A>
and r=<1+3p, 1-p,-1+u>

At the point of intersection,
<1-2A,-1+A,2+A>=<1+43p,1-p,-1+p>

Comparing components: 1~2A=1+3p @
“1+A=1-p an
2+A=-1+p (I1m)

Solve I and II simultaneously: A =6, u=-4.

Substitute A = 6, p = —4 into (III), a false statement is obtained.
Hence, the two lines do not intersect.
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7.1.1 Parametric Equation of a Line in 3D

¢ The vector equation of the line L passing through the point with position vector a
and parallel to vector d is given by r=a + Ad.

X a,

N

e In3Dspace,letr=|y|(,a=|a, |andd=|d, |.

z a, d,
x q, d,
e Hence, the equation of the line can be writtenas | y | =|a, | TA| d, |.
z a, d,

e Comparing the Z, j and k components:

x=a1+?\.d1
y=a; +Ad
z=a3 + A\d;

This set of three equations is referred to as the parametric equation of the line L.

7.1.2 Cartesian Equation of a Line in 3D

e The vector equation of the line L passing through the point with position vector a
and parallel to vector d is given by r =a + Ad.

¢ The equivalent parametric equation of line L is

x=a; +Ad;
y=a;+ Ad>
z=asz+ Ads
e Reorganising the parametric set:
X-a, _y=a, _z-d; _,
dl d2 d3

This is referred to as the Cartesian equation of a line in 3D space.
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Example 7.6

Find the parametric equation of the line passing through the points with position vectors
<1,-1>and <4, 3> Hence find the Cartesian equation of this line.

Solution:

Direction vector of line, d=<4,3>-<1,~1>=<3,4 >,

Hence, vector equation of line is r=<1,-1>+1<3,4>.
Parametric equation of line is x=1+3A
y=-1+4A
. . . x-1 y+1
Cartesian equation of line is = = e
= 4x-3y=7

Example 7.7

Find the parametric equation of the line passing through the points with position vectors
<2,5,10>and <3, 4, 12 >. Hence find the Cartesian equation of this line.

Solution:

Direction vector of line, d=<3,4,12>-<2,5,10>=<1,~1,2 >,

Hence, vector equation of line is r=<2,510>+A<1,-1,2>.
Parametric equation of line is x=2+A
y=5-2A
z=10+2A
. . .. z-10
Cartesian equation of line is x-2=5-y= .
Example 7.8
Find the vector equation of the line with Cartesian equation g =y+2= 4 ; z
Solution:
Parametric equation of lineis:  x=3A,y=-2+A,z=4-2A.
x 0 3 0 3
Hence, vector equation of lineis | y |=| -2 |+A| 1 | = r=|2|+A| 1
z 4 ~2 4 -2

© O.T.Lee 102




07 Vectors I

Exercise 7.1

L.

10.

Find the vector equation of the line passing through the point with position vector a
and parallel to vector d :
(@) a=2i+j,d=4i+5j-k b)a=5k,d=2j-k

1

) a=<1,1,-1>d=<1,2,-1> (d) a=<\/§,0,1>,d=<0,-1,§>

Find the vector equation of the line passing through the points with position vectors
aand b :

(a) a=-2j,b=2k (b)y a=i+2j+k,b=3i+5j-2k
1 -2 0.5 04
(c)a=|2|,b=|1 (da=|-01|,b=|-05
5 7 04 0.1

. Determine the value of A if the point with position vector <5, 8, 7 > lies in the line:

(@) r=<1,2,-3>+1<2,3,5> (b) r=<15,13,-23>+1<2,1,-6>

. The point with position vector < m, -9, —10 > lie on the line

r=<12,3,4>+X1<4,6,7>. Find m.

. The point with position vector 10 i + 8 j +19 k lie on the line

r=—2i+mj+3k+A(3i+j+4k). Findm.

Determine which of the points <9, 1, 8 >, < -7, -3, -4 >, <13, -2, 11 > lie on the line
r=<1,-1,2>+A<4,1,3>.

. Find the vector equation of the line with equation:

(a) y=—2x+3 (b)y=%—l (¢) 3x+4y=12

. A line has vector equation r =< 1,3 >+ A <-1, 3 >. Find the gradient of this line.

Hence, or otherwise find the equation of this line in the form y = mx + c.

. A line has vector equation r = <A + 3, 1 — 21 >. Find the parametric equation of this

line. Hence, or otherwise find the equation of this line in the form ax + by = c.

Find the vector equation of the line passing through the point with position vector a
and parallel to the given line:

@ a=-i+2j, r=Qi+tj-k)+r(i-3j)

(b) a=<1,24>,r=<(1+2A),2-A),(-A)>

2+3A
1 1+ 0
A1
(c)a=|-4|,r=| r-5 (d) a=|2|,r= 5
5 3 -4 10 ey
4
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11.

12.

13.

14.

15.

16.

17.

18.

Find the Cartesian equation of the line with vector equation:
@ r=0i-2j-k)+M2i-3j+5k) (b) r=<(-1-21),(5+A),3-41)>

(©) r= (2224 22 A @ r=<1,-1,-1>+2<2, 2 35
4 3 4 3°5°5

Find the Cartesian equation of the line passing through the point with position vector a
and parallel to the given line:

@ a=—-i-2j+2k, r=(-2i+3j+5k)+Mi-3j+6k)

(b) a=<-1,-5,6>,r=<(4-21),(2+5)0), (-5-21)>

Find the Cartesian equation of the line passing through the points with position vectors

(@ <0,0,0>and<5,5,5> (b) <-1,3,4>and<5,6,-4>
(c) <3,4,-1>and<2,4,1> (d) <10,5,-5>and <10, 6,-5 >
Find the vector equation of the line with Cartesian equation:
y—-2 3-z z-5
a) x=—— = b) x=0,-1-y=
(@) x=— 5 (b) y=3
I+2x -1-2 5+3z -1+4x _1-3 2+ 6z

© === = @ =— -

3 4 5 5 6 -3

Find a vector that is perpendicular to <2, 5, —1 >. Hence, find the vector equation of a
line passing through the point with position vector < 1, 2, 3 > and perpendicular to
<2,5,-1>.

Find the vector equation of a line passing through the point with position vector
1+ 4A
>.

<2,2,-2> and perpendicular to the line r =< -1 — 2, 3 — A,

A line has vector equation r =<a, b, ¢ >+ A <u, v, w>. Find:
(a) the parametric equation of this line (b) the Cartesian equation of this line.

Use a vector method to find the position vector of the point of intersection (where it
exists) between the lines:

(@ r=<1,2,1>+A<4,5,1>andr=<5,1,2>+pu<4,8,1>

(b) r=<-1,3,2>+A<1,10,5>andr=<3,4,26>+A1<1,-10,9 >

*19. Find the value(s) of m given that the lines with vector equations

r=<1,2,-1>+A<1,-1,4>and r=<5, 1,4 >+ pn <1, 2, m > are non-intersecting.

*20. Find the algebraic relationship between m and » if the line with vector equation

21.

F=<m,-1,1>+%<2,-1, 3 > intersects the line with vector equation
r=<-3,-1,-1>+u<6,-2,n>.

Find the acute angle between the lines with vector equations:
(@ r=<0,0,0>+A<0,1,0>andr=<1,1,1>+1<1,0,0>
(b) r=<0,-1,1>+A<1,2,-1>andr=<1,1,0>+A<2,-2,1>.

*22. Find the equation of a line passing through < 1, 2, 1 > that is perpendicular to both

r=<X (-1-2X), (1 +20)>and r=<— 2, 2 + ), (5 + 20) >.
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7.2 Scalar Product Equation of a Line in 2D

e Consider Line L which passes through the
point A with position vector a. Let Line L be p
perpendicular to vector .

¢ Let R with position vector r be any point on R
Line L.

e C(learly, AR is also perpendicular to n.

e Hence, AR.n=0.
ButAR=r-a. = (r-a).n=0
r.n:a.n

A
Line L

e In summary, in 2-dimensions, the scalar
product (dot product) equation of a line passing through the point with position
vector a and perpendicular (normal) to the vector # is:

~

Position vector of any point on line [

Position vector of fixed point on line

Vector perpendicular to line

Example 7.9

Find a scalar product equation'of the line passing through the point with position vector
5 i+ 6j and perpendicular to the vectori+2j.

Solution:

Scalar product equation of lineis r.(i+2j)=5i+6j).(i+2j) = r.i+2j)=17.

Example 7.10
Find a vector equation of the line with scalar product equation r. (4 i —5j ) = 20.
Solution:

Let <0, k> be a point on this line. = <0,k>.<4,-5>=20 = k=-4.

Hence, <0, —4 > is a point on this line.

The given line is perpendicular to < 4, -5 >. Hence, the given line is parallel to <5, 4 >.
Therefore, a vector equation of this lineis r=<0,-4>+A<5,4>.
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Exercise 7.2

1.

(a) Given that the point <—1, 0 > lies on the line 7. <2, -3 >=k. Find k.
(b) Given that the point <3, k> lies on the line ¥ . <0, 5 >=20. Find .
(c) Given that the point <5, 4 > lies on the line r . <k, 6 >=-10. Find k.
(d) Given that the point <k, —7 > lies on the line r. <k, 3>=4. Find .

Determine with reasons if the points:
(a) <2,-4>and <10, 9 > lie on the line with equationr.< 8, -7 >=18§
(b) <—6, 12> and <-3, 5> lie on the line with equation r. < 11,5 >=-6

Find a scalar product equation of the line passing through the point with position vector
(a) =5i+3j and perpendicular to the vector 2 i — 3 j

(b) 2i-4j and perpendicular to the vector =5 i+ 10 j

(c) —i—2j and parallel to the vector 3 i — 10

(d) 10i—2j and parallel to the vector4i+ 5 j

Find a scalar product equation of the line passing through the point with position vector
(a) 2i+5jand perpendicular to the liner=i+2j+A(6i+j)

(b) —8i+ 3 and perpendicular to the liner=i+2j+A(3i—4j)

(¢) —12i-5j and parallel to the liner=—i+4j+A(3i+8j)

(d) 7i-9jand parallel to the liner=-5i—-2j+ A -2i+7j)

Find a scalar product equation of the line passing through the point with position vector
(a) 8i+6jand parallel to the liner.(i+2j)=5

(b) 0.5i+ 0.9 and parallel to the liner.(—4i+3j)=12

(c) 15i-20j and perpendicular to the liner. ( 10— 3 )=-30

(d) —2.5i- 5.6 and perpendicular to the liner. (0.8i+2.7j)=5

6. Find a vector equation r = a + Ad of the line with scalar product equation:

(@ r.(@-2j)=12 () r.-5i+8j)=-10 (c) r.(—\3i+4j)=5V3

7. Find the position vector of the point of intersection (where possible) between the lines:

(a r=<1,1>+A<3,0> andr.<0,5>=3

(b) r=<3,0>+A<4,-1> andr.<1,4>=10
(¢) r=<0,8>+A<-5,1> andr.<-5,1>=-18
(d) r=<7,9>+A<1,1> andr.<-3,-1>=6.

8. Find the acute angle between the lines with equations:

(@ r.<0,1>=3andr.<0,-2>=5 (b)) r.<2,-1>=5andr.<-1,3>=4

9. Use scalar products to prove that the following lines are perpendicular:

(@) r=<1,0>+A<1,1>,r=<0,1>+A<1,-1>

(b) r=<59>+A<8,7>,r=<2,1>+i<-7,-8>

(c) r.<10,15>=5,r.<15,-10>=6 (dr.<-1,-3>=5,r.<3,-1>=-9
() r.<3,1>=5r=<0,2>+A<3,1> ) r-<2,-1>=5,r=<3,4>+2<2,-1>
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7.3 Vector Equation of a Plane

Consider the plane IT which passes z n
through the fixed point A with
position vector a. Let vector n be
perpendicular to the plane I1.

Let point R with position vector r be
any point on the plane I1. Note that
the points A and R form a line L on
the plane I1.

Clearly, AR which is within the

plane IT is also perpendicular to .

Hence, AR.n=0.

ButAR=r—-a. = (r-a).n=0
r.-n=a.n

In summary, the vector equation of a plane passing through the point with
position vector a and perpendicular (normal) to the vector n is:

v

rFrem=da.n
A A

ad

~

Position vector of any point on plane

Position vector of fixed point on plane

Vector perpendicular to plane

The vector equation r . # = a . n is ambiguous and must be read in context.

In a 2D context, it represents the scalar product vector equation of a line passing
through the fixed point with position vector @ and perpendicular to vector n.

However, in a 3D context, it represents the vector equation of a plane passing
through the fixed point with position vector a and perpendicular to vector n.

In each case, n is termed the normal vector.

Rewriting r=<x,y,z>andn=<a, b, c>, r.n=a.n becomes
<x,y,z>.<a,b,c>=d where a.n=d.
That is: ax+by+cz=d which is the Cartesian equation of a plane.
» Note that the coefficients of x, y and z are the components of the vector
normal to the plane.

P
|7
the origin to the plane. Hence, for the plane with equation r. 7 =¥,
| Y l represents the shortest distance from the origin to the plane.

For the plane with equation r . n = p, | | represents the shortest distance from
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Example 7.11
Given that the point <1, 1, 5 > lies on the plane r . <3, 1,-4 >=+k. Find k.
Solution:

Substitute < 1, 1, 5 > into the equation of the plane, <1,1,5>.<3,1,-4>=k.
3+1-20=%kt = k=-16.

Example 7.12

Determine if the points with position vectors <1, 1, 4>and < 5, —1, 8 > lie on the plane with
equation r.<-1,3,2>=10.

Solution:

Substitute < 1, 1, 4> into LHS of equation of line. = <1,1,4>.<-1,3,2>=10.
Hence, <—1, 3, 2 > lies on the plane.

<5,-1,8>.<-1,3,2>=8+10. Hence, <5, —1, 8 > does not lie on the plane.

Example 7.13

Find the vector equation of the plane passing through the point with position vector
—2 i+ 3 j + k and perpendicular to the vector -3 i +2 k.

Solution:
Vector equation of plane is r.(-2i+3j+k)=(-2i+3j+k).(-3i+2k)
= r.(-2i+3j+k)=8

Example 7.14

Find the vector equation of the plane perpendicular to the vector <2, -2, 5 > and containing
the line with equation r =<1 —2A, 3 +4A, —1 + 2A >,

Solution:

Line is perpendicular to <2, -2, 5 > as the line lies on the given plane.

LetA=0.

Hence, the point with position vector < 1, 3, —1 > lies on the given line and hence lies on

the given plane.

Therefore, vector equation of planeis r.<1,3,-1>=<1,3,-1>.<2,-2,5>
r.<1,3,-1>=-9
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Example7.15

Find the position vector of the point of intersection between the line r =<2A, 1 +A,3 -1 >
and the plane r.<-1,1,4>=3 .

Solution:
Substitute r=<2A, 1 +A,3-A>intor.<-1,1,4>=5.
<2A, 1+A,3-A>.<-1,1,4>=3
= SA+13=3 = A=2
Hence, point of intersection has position vector <4, 3, 1 >

Example 7.16

A plane passes through the points A, B and C with position vectors <1,2,1>,<-2,-1,4>
and <2, 1, -2 > respectively. Without the use of a calculator, find the vector equation of the
plane in the form r. n = k.

Solution:

AB=<-2-1,4>-<1,2,1>=<-3,-3,3>
AC=<21,-2>-<1,2,1>=<1,-1,-3>

Let n be a vector normal to the plane containing the points A, B and C.
Clearly AB x AC will be normal to the plane.

Hence, n=AB x AC

-3 3 -3 3| |3 -3
-1 =37 Il ——3’]1 -1
=<12,-6,6>=6<2,-1,1>

=< >

Hence, vector equation of plane is r.<2,-1,1>=<1,2,1>.<2,-1,1>
r.<2,-1,1>=1

Note:
e As <12, 6,6>=6<2,—-1,1> both<12, -6, 6> and < 2, —1, 1 > will be normal to the plane.

Example 7.17
Find the Cartesian equation of the plane with equation r. <2, -1,4 >=10.
Solution:

Letr=<x,y,z>.
Hence, <x,y,z>.<2,-1,4>=10 becomes 2x — y + 4z = 10.
The Cartesian equation of the plane is 2x —y +4z=10 .
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Example 7.18
Find the vector equation of the plane with equation x — 2y +4z = 8.

Solution:

Rewrite  x-2y+4z=8as<x,y,z>.<1,-2,4>=8.
Hence, vector equation of planeisr.<1,-2,4>=38

7.3.1 Alternative form for the vector equation of a plane

Linel e
S S B
---------- e AD
o R""-TL """"""" -2
. /
.. — g%
/.,
s 7

....

e Let the point A with position vector a lie on the plane IT.
Let b and c be two non-parallel vectors that lie on the plane IT.
Let R with position vector r be any point on the plane IT.
e Clearly OR=0A + AR
r=a+ AR
« Since AR is on the same plane as the non-parallel vectors b and c,
we can express AR in terms of b and c.
e Let AR=Ab+pec.
¢ Hence
r=a+tib+pc

¢ Hence, the vector equation of a plane passing through the point with position vector
a and containing the non-parallel vectors bandcisr=a+Ab+pc

Example 7.19

A plane passes through the points A, B and C with position vectors < 1,2, 1>, < -2, -1, 4>
and <2, 1, -2 > respectively. Find the vector equation of the plane.

Solution:

AB=<-2,-1,4>-<1,2,1>=<-3,-3,3>
AC=<2,1,-2>-<1,2,1>=<1,-1,-3>.

Hence, vector equationisr=<1,2,1>+A<-3,-3,3>+pu<1,-1,-3 >
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Exercise 7.3

1.

(a) Given that the point <-1, 0, 5> lies on the plane r. < 1,4, -3 >=k. Find £.
(b) Given that the point <-2, 6, k> lies on the plane r. <2, -2, 8§ >=-25. Find &.
(c) Given that the point < 1, -2, —5 > lies on the plane r. <3, £, -2 >=16. Find k.
(d) Given that the point <2, k, —10 > lies on the plane r. <2, 5, £>=10. Find £.

. Determine with reasons if the points:

(a) <2,2,—-4>and <5, -4, 5 > lie on the plane with equationr.< 1,4, -2>=18
(b) <5,9,-11>and <3, 5, 6 > lie on the plane with equationr.<1,4,5>=-6

. Find the vector equation of the plane passing through the point with position vector

(a) —i+2j+ 3 k and perpendicular to the vector4i+3 k
(b) 2i—4j+ 6 k and perpendicular to the vector -3 i+ 7+ 10 k
(c) <4, 8, -3 > and perpendicular to the vector< 1, 4, 1 >
2 4
(d) | -5 | and perpendicular to the vector | 8
8 -11

Find the vector equation of the plane perpendicular to the vector n» and containing the line
with the given equation:
@ n=—i+2k,r=i+4j-5k+NM8i+j+4k)
by n=<3,-2,-2>r=<3,-2,-5>+A<-2,-8,5>
() n=<-4,7,9>r=<3+A,-2-2%,1+21>
1+120 —-1+4

B B _ 1+ 4%
(d) n=<1,10,-10>r=< Ty s >

. Find the position vector of the point of intersection between the given line and plane:

@) r=-3i-2j+4k+NMi+2j—4k),r.<3,1,-4>=36
(b) r=<2+3\,1+50,11-6A>r.<7,-6,5>=-15
©) 1—; =l;—3 =z+8;r.<10,15,-4>=138

@ r=< Dk SHD A3 4 O
4 5 4 2

Find the vector equation of the plane in the form (i) r.n=4k (ii)) r=a+Ab+tpc
passing through the points with position vectors:

(a) <0,0,0>,<0,1,0>,<0,0,1> (b) <1,2,5>,<5,2,1>,<2,1,5>
() <-2,3,4>,<-7,-4,2>,<6,3,-4> (d)<4,10,8>,<6,8,-5>,<3,5,9>

. Find the vector equation of the plane in the form r.n =k passing through the point with

position vector @ and the given line:
@) a=—-i+j+k,r=2i-3j+5k+NMi—-j+2k)
(b) a=<1,4,7>r=<2,2,2>+A1<6,1,8>.

Find the vector equation of the plane in the form r.n =k passing through the lines with
equation:

@ r=i—-j+ k+Mi—-j+2k)andr=—i+2j-5k+AN3i+j-2k)

(b) r=<1,2,3>+A<2,7,1>andr=<4-%,2+7A,7-31>
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9.

10.

11.

12.

Find the vector equation of a plane passing through the point with position vector a and
parallel to the given plane.
(a) a=<1,2,-5>;r.<2,8,9>=30 (b) a=<2,5,8>;r.<-6,3,1>=-10

Find the vector equation of a plane passing through the point with position vector a and
perpendicular to the given plane.

(@) a=<4,-5,3>;r.<-1,0,6>=5 (b) a=<-3,7,5>;r.<1,2,-3>=20
Find the Cartesian equation of the plane with vector equation:

(a r.<0,0,3>=5 (b) r.<0,-2,0>=5

() r.<-2,-4,3>=10 d) r.<5,2,-6>=25

Find the vector equation of the plane with Cartesian equation:

(a) x=5 ®d) x+ty=1

(c) y+z=6 (d) 2x-3y+4z=8

*13. Find the point of intersection between the planes r.<1,—-4,1>=10,

r.<-1,2,-1>=-4andr.<2,4,1>=5

7.3.2 Angle between line and plane

e A is apoint on the line L with equation

r=a+ Ad. The line L intersects the plane ?/ A et

with equation r . n = p at B. K is the foot

of the perpendicular from the point A to (]

the plane. T /
o The angle between the line L and the plane a K //

1s ZABK = a. Z‘\\\\E“_\ //

o Let ZBAK =0. Clearly, 0 is the angle
between d, the direction vector of the line L, and the normal vector #.

IZ.n = (?-i\l

e Hence, cos 6 =

n
= 0= cos_l(cf-ﬁ)
o Butoc=90°—6.
Hence, the angle betweenr=a+Adandr.n=pis 90o -0= 900 — cos—l(ci-ﬁ).

o Alternatively, sina=cos 6 = sina=d.n.

-1 .
Hence, the angle between r=a+Adandr.n=pissin (d.n).
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Example 7.20

Find the acute angle between the line r =<1 — 2, A, 2 -+ 3X > and the plane
r.<3,1,2>=-4,

Solution:
The line with equation r = < 1 — 2A, A and 2 + 3A > has direction vectord =< -2, 1,3 >

The plane with equation r. <3, 1, 2 >=—4 has normal vectorn =<3, 1,2 >.

The angle between d and # is given by: ,
angle(l-2,1,31,[3,1,21) o
<-2,1,3>.<3,1,2> 1 85.9949n'“
cos 0= = — o

l<-2,1,3>||<3,1,2> 14
= 0=859

Hence, the acute angle between the line and plane is 90 — 85.9 = 4.10.

Alternatively:

-1 _ .
Angle between line and plane = sin [< 2,1,3>.<3,1,2 >]

[<=2,1,3>||<3,1,2>|

7.3.3 Angle between two planes

The angle between two planes ABCD
and CDFE is given by ZMKN.

MK and NK are lines respectively on
each of the planes and are each
perpendicular to the line of
intersection between the two planes.

Let the equations of the planes ABCD
and CDEF be r.m = p; and r . n = p; respectively.

Let Z/MKN = 0. n is normal to KN and m is normal to KM. Quite clearly the angle
between m and n is also 6.

Hence, the angle between the planes
r.m=p; and r. n = p, is the angle between the normal vectors of the two planes
1

and is given by cos (men).
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Example 7.21
Find the acute angle between the planes r.<1,2,-2>=5andr.<-1,-1,2>=—4.

Solution:

The plane with equation r. <1, 2, -2 > =5 is perpendicularto < 1, 2, -2 > .
The plane with equation r. < -1, -1, 2 >=—4 is perpendicular to < -1, -1, 2 >
Hence, the angle between the 2 planes = angle between the two normal vectors.

Angle between <1,2,-2>and <-1,-1,2 >is given by

cos 6 = <L,2,-2>.<-1,-1,2> -7 |
<1, 2,-2>|]<-1,-1,2>5 36

162.2843

angle([1,2,-21,[-1,-1,21> o
[u]

= 0=162.3"

Hence, acute angle between the two planes = 180 — 162.3 = 17.7°.

Exercise 7.4

1.

Use vector methods to find the acute angle between the following lines and planes:
(@ r=<1,1,-4>+X1<3,0,4>r.<0,0,1>=5
(b) r=<-1+20,3\,1-A>r.<0,1,1>=-4

-A S5-A —1+2A > r.<1,3,3>=12

(C) r=< VR
d x=1+A,2y=A,3z=1+Ax+t4y—-z=1

4 5 7 3 ’
The line r =<4+ 3X, 1 =3, 1 + A > is inclined at an angle of 60 to the plane
r.<a,-2,1>=4. Find a.

The line r =<4, 1, -3>+ A <3, b, 2 > is inclined at an angle of 45° to the plane
r.<1,4,5>=20. Find b.

Find the vector equation of the line passing through the point with position vector
<3, 2, -1 > and perpendicular to the plane r. < 5, 2, -8 > = 16.

. Use vector methods to find the acute angle between the following planes:

(@ r.<0,0,1>=5,r.<0,1,0>=2 () r.<0,-1,0>=3;7.<1,0,0>=10
(C) r'<1:29_1>=_3;r'<3,_1,4>=13
d r.<5,-4,3>=6;r.<-5,2,10>=15

The acute angle between the planes with equations . <a, 3, 5 >=10 and
r.<-5,1,4>=30is45". Find a.

The acute angle between the planes with equations 7. <1, b, =2 >= 10 and
r.<1,2,0>=20is30. Find b.
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8. Find the algebraic relationship between m and » if the plane r. <-1,m, n>=121is
inclined to the plane r. <1, 1,0 > =15 at an angle of 60°.

9. Find the acute angle between the planes 2x + 3y — 5z=10 and —x + 2y + 4z =4.

10. Find the vector equation of the plane which passes through the point with position
vector < 2, 1, =2 > and is perpendicular to the plane r. <3, 1,-2>=6.

7.4 Vector Equation of a Sphere

e Consider the point R with position
vector # on the surface of a sphere of
radius k and centre A with position
vector a.

e Clearly, AR=0R-0A.

= AR=r-a. oA
e |AR| =radius of the given sphere
=

|AR] =|r-al =k. X

o That is, any point R, with position vector r , on the surface of the sphere, satisfies
the equation lr—al=k

e Hence, the vector equation of a sphere with radius & and centre with position vector
ais:

lr—al=k
/X A %

position vector of any point on sphere radius of sphere

position vector of centre of sphere

. Rewrltmgr <x, y,z>anda <ay, a,as> |r—a | = kbecomes

2 2
(x— al) +(y— az) +(z—a3) =k which is the Cartesian equation of a sphere of
radius k with centre located at (a1, a2, a3)

e Using a similar method, it may also be shown that the vector equation of a circle
with radius & and centre with position vector a is lr-al ==
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Example 7.22
Find the vector equation of a sphere with centre at (3, 4, 2) and radius 1.
Solution:

Vector equation is lr—< 3,4,2>|=1.

Example 7.23

2 2 2
Find the vector equation of the sphere with Cartesian equationx +y +z —2x+4y=11.

Solution:
. . 2 2 2
Rewrite equation: x =2x+y +4y+z =11
2 2 2
Completing squares: x-1) +(y+2) +z =11+1+4
2 2 2

x-=1) +(+2) +z =16
Hence, vector equation is |r—< 1,-2,0>|=4.

Example 7.24

Use a vector method to determine if the point with position vector < 1, 6, —1 > is outside, on
or inside the sphere with equation lr—<3,2,2>| =4,

Solution:

Distance from point to centre of circle = | <1,6,-1>-< 3,2,2>|=|<-2,4, 3> |

— V(22 +42+(3)2 =29

Since this distance > radius of sphere (= 4), the given point is outside the sphere.

Example 7.25

Use a vector method to find the position vector of the points of intersection (if any) between
the line r=<-1,1,2>+A<1,2,—1> and the sphere |r—<1,1,1> | = 5.

Solution:

Substitute r=<—-1+A, 1 +24,2—A>into |r—<1,1,1> | =+5.
= |<-1+01+20,2-A>-<1,1,1>]| =15
| <2+20,20,1-1>]=+5
(24A) + @) +(1-2) =5
A=0,1
Hence, required position vectors are: r=<-1,1,2>and <0, 3,1 >,

solvel(-2+a ) 24+ (2a 2" 2+ 1-ar)"2=5 |&
{x=8,x=1}
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Example 7.26

Prove that the line r =<3, 0,2 >+ A <2, 2, —1 > is a tangent to the sphere
lr—<2,1,-1>] =410.

Solution:

Substitue 7 =<3 + 2, 24, 2 — A >into |r—<2,1,-1> | = 410.
= |<3+20,20,2-2>-<2,1,-1>| =410
2 2 2
(1+20) +QA—1) +(3-21) =10
= 7»=l.
3

Hence, the.re 1S (?nl}{ one point of contact. P VY TR EL J Y T L S LY VW L vy ST R
= The given line is a tangent to the sphere. {x%}

Exercise 7.5

1. Find the vector and Cartesian equations of a sphere with the stated centre and radius.
(a) centre (3, 4, 0), radius =3 (b) centre (-1, 2, 2), radius =5
(c) centre (-1, 2, -5), radius = J10 (d) centre (1, 4, -5), radius =4

2. The point (3, 2, 1) lies on the sphere with equation |r-<5,4,1>|=k Find k.

3. The points (-3, -1, 1), (1, =2, =2) and (-3, 2, —2) lie on the sphere with equation
|r—a|=5. Find a.

4. Determine if the indicated points are outside, on or inside the stated spheres.
@ (1,5,-1), lr—<-1,-2,1>| =7 (b) (-3,2,-6), lr—-<2,-1,5>1=13
5. Find the vector equation of the following spheres:
2 2 2 2 2 2
@ x ty +z +2x—-4y+6z=11 (b) 3x +3y +3z =3x-9y+6z=2

6. Find the point(s) of intersection (if any) between the given line and sphere.
() r=<0,4,1>+1<1,2,-1> |r—-<4,0,2>| =7
) r=<1,1,2>+r<-1,1,1> lr-<1,-1,2>| =6

7. Prove that the liner=<1,1,2>+ A <-1, 0, 0 > is a tangent to the sphere with equation
lr—<-1,0,1>]=+2.

8. Prove that the line r=<1,0,2>+2A <=2, 1, -2 > is a tangent to the sphere with
equation lr-<0,-1,1>| = V2.

9. Find the equation of a sphere passing through the points (-1, 2, 2), (1, -2, -2), (-1, -1, 1)
and (1, 1, 1).

10. Find the intersection (if any) between the given sphere and plane.
@ |rl=10,x=6 ®) lrl=3,y=>5

11. Find intersection (if any) between the spheres:
@ |rl=5lr-<1,00>1=5 (@®) lr-<1,0,1>| =4,

r—<1,0,0>|=5
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7.5 Shortest Distance
7.5.1 Shortest Distance between point and line

e [t is required to find the shortest distance between a point B with position vector b
and the line L with equation r =a + Ad.

e Scalar Product Method Line L

o Let M be the foot of the perpendicular
from B to the line L.

e Hence, the closest distance is IBMI
where BM . d =0.

¢ Cross Product Method
o Let M be the foot of the perpendicular from B to the line L.
Let A with position vector a be any point on the line L.
Let 0 be the angle between AB and the line L.
« Shortest distance = | BM |
~ |AB]| sin @ Line L
_|d||p-a]sin6

» Hence, the shortest distance between the point with position vector b
and the line with equation r = a + Ad is \ (b—a)x d ‘ .

Example 7.27

Without the use of a calculator, find the minimum distance between the point P with position
vector <2, 1,4 > and the line L with equation r=<2+XA, A, -1 —A >,

Solution:

Let M be the foot of the perpendicular from B to G —
the line L. P [2 1 4]

PM=<2+ 7\" —?\,, 1-A>=-< 2’ 1’ 4> define mixd=[2+x,—x,—-1-x1] dome

=<A,-A-1,-A-5> m{x)-p
[x —x-1 -x-5]
Direction vector of lineisd=<1, -1, =1 >. dotP(Lx —x-1 —x-5], “’—1’_1])3.x+6
solve(3-x+6=0,x)
= <Ak-A-1,-A-5>.<L1-1,-1>=0 norm{m{-2)-p> te=-2)
= h==2 L T

Hence, shortest distance between P and given line
=|<nA-1,-4-5>]
=|<2,1,-3>| = Ji4
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Alternative method using the cross product

Equation of line: r=<2+X,-A, -1 —A> = A point on the lineis <2, 0, -1 >.

Direction vector of line d=<1,-1,-1> = d= 1< 1,-1,-1>.

Hence,

3

shortest distance is = |(< 2,1,4>-<2,0,-1>) x %< 1, -1, -1 >|

=L3|<0, 1,5>><<1,~1,—1>|

7
L

= < <4,5,-1>
ﬁ' \5 -1}’ -1|’ | >

v

Alternative method using CAS calculator

Let M be a point on the line L.
PM=<2+A A ~-1-A>-<2,1,4>=<i,-A-1,-AL-5>

Using fMin command: fMintnorm(Lar,—a—1,-2-51,a) |~
minimum value for |PM | = /14 . {Minvalue=y/14 ", x=—2}

7.5.2 Shortest Distance between point and plane: Scalar Projection Method

It is required to find the shortest distance A

between a point A with position vector a A | n

and the plane I1 with equation r . n = p. / )Si< 7

Let B be any point on the plane IT. /"/ LJK ,
) d /

The shortest distance between A and the ‘ B /

plane IT is | KA | where K is the foot of
the perpendicular from A to the plane.

But |KA | = scalar projection of BA onto n, the vector normal to the plane
|BA n| |(a b). n|
Hence, the shortest distance between A with position vector a and the plane
r.n=pis given by the | (a-b).n | where b is the position vector of any point on
the plane. The absolute value is necessary to account for the fact that A could
sometimes be “above” or “below” the plane.
Consider the plane with equation r . n= p (the normal vector is a unit vector).
o The shortest distance between the plane and the origin is
| (0-b).n | =|b.n | where b is any point on the plane.

« Since b is on the plane, b . n= p. Hence, the shortest distance is | p .

™ \'O

Therefore the shortest distance between the plane r . n = p and the origin is |
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Example 7.28

Find the shortest distance between the point A with position vector < 2, 3, —4 > and the plane
with equationr.<1,2,-2>=7,

Solution:

The point with position vector < 1, 3, 0 > is a point on the given plane
as<1,3,0><1,2,-2>=7.

The normal vectorn =<1, 2, -2 >, [2,3,-41%3 3
~ 1 [2 3 -4]
_ [1,3,01%b
Hencen—§<1, 2,-2>. [1 3 o]
[1,2,-23%n
[1 2z -2]
Therefore abs (dotP(unit¥Y<n>, a-b>
’ 3
the shortest distance between A and the plane n

= l[<2,3,—4>—<1,3,0>].§<1,2,—2>|

= |<1,0,_4>.§<1, 2,-2> |

= 3 ynits

Exercise 7.6

1. Use a vector method to find the minimum distance between the point with position vector
a and the given line:
(@ a=<1,0,1>andr=<1,1,-1>+A<4,-1,0>
(b) a=<-2,6,-4>andr=<0,2,-5>+A<-2,0,4>
(c) a=<0,0,0>andr=<1+3A,-1+51,4-A>
(d a=<4,2,4>andr=<3-20,4+ A, -3-A>

2. The minimum distance between the point P with position vector < 1, 0, k >and the line
r=<1,2,-5>+1<0,2,-2>is 542 . Find .

3. The minimum distance between the point P with position vector < k, 1, 1 > and the line

r=<-2,0,-1>+A<2,1,-1>is _‘/SE Find .

*4. Aisapointonthe liner=<1,-2,1>+A<-2,1,-1>. Bisapoint on the line
r=<2,1,-1>+pn<4,-1,2>.
(a) Show that these two lines are non-intersecting.
(b) The two lines are closest together when BA is perpendicular to both lines.
Find the closest distance between these two lines.

*5. Aisapoint on the line r=<1+2X, A, 1 —3A>. Bisa point on the line
r=<1-2x,4+3A,—1+2A.
(a) Show that these two lines are non-intersecting.
(b) The two lines are closest together when BA is perpendicular to both lines.
Find the closest distance between these two lines.
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*

@)

10.

11.

12.

13.

14.

Find the minimum distance between the lines:
(@ r=<2,5,1>+1<0,-1,2> and r=<3,2,2>+A<2,0,-1>
(b) r=<1+X,4A,5> and r=<2-A,3+%,-A>.

. Find the shortest distance between the point with position vector a and the given plane.

(a) a=<0,0,0>;r.<2,1,2>=6 (b) a=<0,0,0>;r.<1,2,-2>=-6
(c) a=<4,0,3>;r.<1,0,0>=5 (d) a=<5,1,0>;r.<0,1,0>=6
() a=<2,-2,4>;r.<1,-1,2>=42 f) a=<8,4,-4>;r.<2,2,-1>=10.

. The shortest distance between the point with position vector < 2, b, 5 > and the plane

r.<-1,1,2>=101is 10. Find b.

. The shortest distance between the point with position vector <1, 5, —1 > and the plane

r.<2,1,¢>=10is 1. Find c.

Find the shortest distance between the given line and the given plane:
@ r=<-1+A1A1-31>r.<3,0,1>=38

(b) r=<2-A,3+A-A>r.<0,2,2>=2,

Use a vector method to find the shortest distance between the planes r.<2,2,1>=10
andr.<2,2,1>=12.

Use a vector method to find shortest distance between the planes r.<1,-2,2>=35
andr.<-2,4,-4>=8.

Find the shortest distance between the sphere || =1 and the planer.<1,2,-2>=4.

Find the shortest distance between the sphere | r—-<1,2,1> | =1
and the plane r. <2, 1,3 >=4.
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08 Vectors III

8.1 Vector Functions

e Consider the vector r =¢i + 2¢j where ¢ is a variable.
As t changes, the vector r changes.
We describe the vector r as a vector function of the parameter z.

¢ The position of a moving object can be described in vector form by stating its
coordinates in terms of time ¢#. The x and y components (or z component) are
expressed as functions of time.

Example 8.1

The position vector of a moving particle at time ¢ seconds is given by
r()=<2,4>+1¢<1,-1> Find the Cartesian equation of the path of this particle.

Solution:
Parametric equation of path: x()=2+¢
v =4-t
Hence, Cartesian equation is x+y=6
Example 8.2

The position vector of a moving particle at time # seconds is given by

r+1
r(H)= [ J . Find the Cartesian equation of the path of this particle.

2 -
Solution:
Parametric equation of path: x=t+1
2
y=t —1
Rewrite r=x-1
Substitute into y:
2

Hence, Cartesian equation is y=x-1) - 1.

That is, the path traced by the particle is a parabola.
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Example 8.3

The position vector of a point P at time # seconds, is given by r (/) =2 cos () i + 3 sin (1) j .
Determine the parametric equation and Cartesian equation of the path traced by P.
Sketch the path, indicating its direction.

Solution:

The parametric equation of the path is
x=2cos(f) y=23sin(?) 4

Rewriting the parametric equation, / \\
x . y
cos()== sin(f)= =
Q) > (1) 3 y
2 2
Butcos #+sin £=1:

2 2

: . X
= Cartesian equation of the path is LINNP AR 4

That is, the path traced by the point P is an ellipse.

The sketch of the path is given in the accompanying diagram.

Direction of motion: r(0)=<2,0>
Close to ¢t = 0, as ¢ increases, x decreases and y increases.

Hence, P moves in an anti-clockwise direction
from the point (2, 0)

Exercise 8.1

1. Find the Cartesian equation of the path traced by the point P with position vector r (¢),
where ¢ represents time. Sketch the path, indicating the direction of motion.

(a) r=2¢ti (b) r=-4tj (¢c) r=tit+4j

d) r=—3i+1j (€) r=—ti+21] (O r=(-9i+ej
(&) r=ti+ij (h) r=ri+1j Q) r=(L+1)i+2]
G r=(+ni-ij & r=ti+téj ) r=[%ji+(t—%)i

2. Find the Cartesian equation of the path traced by the point P with position vector r (7),
where ¢ represents time. Sketch the path, indicating the direction of motion.

(a) r=<sin (¥, cos () > (b) r=<cos (), 2sin (¥) >

(¢) r=<-2sin (), cos () > (d) r=<3cos(21),2sin (2£) >
() r=<1+cos(),2—sin(H)> (f) r=<1-2sin(f),4+cos(H)>
(g) r=<sin(21), cos (2f)> (h) r=<sin (2¢), cos (¥) >
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8.2 Applications involving vector functions

e In this section we will work with particles moving in a plane as well as in space.

Example 8.4

At 0600 hours, particle A starts moving with constant velocity < 1, 3, -5 > ms_1 from the
point with position vector < 2, 1, —5 > metres.

(a) Find the position vector of A after 5 seconds

(b) Find when A is 100 metres from the origin.

Solution:

(a) Position vector of A after 5 seconds
OA(5)=<2,1,-5>+5x<1,3,-5>=<7,16,-30>m.

(b) Position vector of A after ¢ seconds befine a(E)olz I, STieiil, o o1
OA(H)=<2,1,-5>+¢x<1,3,-5> done

(5)
=<2+1,1+3t-5-"5t> = [7 16 -38]
. L solvetnormCal =100,
Hence, Distance to the origin {t=—17.7566,t=16.8423}
O

| A= \J@+8)? +(1+31) +(=5-5¢)° .

When distance = 100 m:
J@+6 +(1+38) +(=5-5) =100
Use the “Solve” command: = ¢=16.04 (reject —17.76)
Hence, A is 100 metres away from the origin 16 seconds after 0600 hours.

Example 8.5

At 0800 hours, the position vectors of objects A and B are <-25, 10, 40 > km and

<50, -20, 10 > km respectively. A and B travel with constant velocity < 10, -5, -5 > and
<-5,5,-10> kmh—1 respectively.

(a) Find the position vectors of A and B ¢ hours after 0800 hours.

(b) Find when A and B are 60 km apart.

(c) Find the minimum distance between A and B and state when this occurs.

Solution:

(a) Position vector of A after £ hours OA() =<-25,10,40>+¢x <10, -5, -5 >
=<-25+10¢, 10— 5¢,40 — 5¢>

Position vector of B after ¢ hours OB(?) = <50, -20, 10>+ x<-5,5,~10>
=<50-5¢,-20 + 5¢, 10 - 10z >
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(b) Displacement vector between A and B after # hours AB(?) = OB(?) — OA()
AB(#) =<50-5¢-20+ 52,10 — 10t >—-<-25+ 10z, 10 — 52, 40 — 5¢ >
=<75-15¢-30+10¢, =30 — 5¢>.
Distance between A and B after ¢ hours = | AB(?)| .
But, | AB(#)| = 60.
Hence, J(75=156) +(=30+10£) + (=30 5¢)> = 60

= t=2.1126, 5.1732 hours.
Hence, A and B are 60 km apart at 1007 hours and 1310 hours.

(c) Distance between A and B,

Ane alzI=[—25, 18, 401+EX[10,-5,-51 |~

d= \/(75 _15t)2 +(_30+10t)2 +(_3O_5t)2 ’ Define b(f)=0[58,-20, 1al+rx:-s,g?r—ie; |

Use “fMin” command: solve (norm(b(E)-ale) y=68, £) dene
Minimum value for AB = 52.7 km {t=2.1126,t=5. 1732}
when ¢ = 3.6429 hours i.e. 1139 hours. {MinValue=52, 7291, t=3. 6429}

£Min(norm(b(t)—a(t)),t, B,12)

Example 8.6

At 6.00 am, the position and velocity vectors of objects A, B and C are respectively
<-20, 50,40 >km , < 15,5, 4> kmh ;< 50, ~10, 20 > km , <20, 25, 14 > kmh ' and
<10, 60, —10 > km and <0, —-10, 25 > kmh_l. If the respective velocities are maintained,

show that: (a) A and B will collide, stating when this will occur,  (b) A and C will not
collide.

Solution:

Position vector of A after # hours OA(f) = <-20 + 15¢, 50 — 5¢, 40 + 4 >.
Position vector of B after ¢ hours OB(f) = < 50 — 20z, —10 + 25¢, 20 + 141 >,
Position vector of B after ¢ hours OC(¢) = < 10, 60 — 10z, =10 + 25¢>.

(a) For A and B to collide, OA(¥) = OB(?);
= <20+ 15¢, 50 — 5¢,40 + 4t > =< 50 — 20¢, —10 + 25¢, 20 + 141 >.

Comparing i components: —20 + 15¢=50 - 20¢ = t=2
Comparing j components: 50-5t=-10+25¢t = t=2
Comparing k components: 40 + 4t =20+ 14¢ = t=2
Since, the i, j and k components of OA and OB are identical for =2,
A and B collide at 8.00 am.

(b) For A and C to collide, OA(?) = OC(?);
= <-20+15¢,50—5¢,40 +4t>=<10, 60 — 10¢, =10 + 25¢ >.

Comparing i components: 20+ 15¢=10 = t=2

Comparing j components: 50 — 5¢=60— 10¢ = t=2

Comparing k components: 40+4t=-10+25¢t = t=50/21#2

Since, the i, j and k components of OA and OC do not produce a common value for ¢,
A and C will not collide.
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Example 8.7

The position vectors of two moving objects A and B at time ¢ hours are given by

ra=<1l+t,2+2t,t+4>andrg=<5-11+1 2t+ 3 >respectively.

(a) Show that the two objects do not collide.

(b) State the coordinates of the point of intersection of the paths of these two objects,
if it exists.

Solution:

(a) At collision: <l+t,-2+2t,t+4>=<5-1,1+1,2t+3>
Comparing i components: 1+t=5—-¢ = t=2
Comparing j components: —2+2t=1+¢ = t=3#2
Since, the #, and j components do not produce a common value for 7,
A and B will not collide.

(b) Equation of path for A is of the form ry, =<1+a,-2+2a,a+4>.

Nofte:

Equation of path for A is of the form rg=<5-5,1+5,2b+3 >.
At the point of intersection:
<l+a, -2+2a,a+4>=<5-b,1+b,2b+3>

Solve simultaneously: l+a=5-b =
1+ar=5-4
—2+2a=1+b ~242a=1+y
at4=2b+3 =243 |,
7 .5
I -3}
3 1038 1 [1+A",_2+21,A’+4J|x=%
Hence, point of intersection of paths is (——, -, —) [ iB 8 19 ]
3°'3°3 3 3 3
W

o In this example, the two objectss do not collide but the paths do intersect.

Exercise 8.2

1. The position vector of a moving body P at time 7 is given by r = 2¢ i — 4¢j. The position

vector of a second moving body Q at time ¢is given by r=(2+ )i+ (é -9)J.

(a) Determine if the two bodies collide and give the time of collision if collision occurs.
(b) Determine the vector equations of the paths of A and B.

Hence, or otherwise, determine the point of intersection of the two paths.

2. The position vector of a moving body P at time ¢ is given by r=¢i+ (1 +£)j. The
position vector of a second moving body Q at time ¢ is given by r = (2¢ — 1) i + 3¢}.
(a) Determine if the two bodies collide and give the time of collision if collision occurs.
(b) Determine the vector equations of the paths of A and B.

Hence, or otherwise, determine the point of intersection of the two paths.
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3. At 1000 hours, particle B starts moving from the point P <5, 2, —10 > metres with
velocity<1,1,5> ms_l. Find: (a) the position vector of B after  seconds
(b) when B is 100 metres from P
(c) when B is 100 metres from the point Q with position vector < 6, 8, 20 >.

4. Particle D travels with a constant velocity of < a, b, ¢ > ms_1 and passes the points
<10, -40, 40 > m and <0, —20, 10 > m at 6 am and 8 am respectively. Find:
(a) a,bandc  (b) when and where D crosses the x-z plane.

5. At 0800 hours, the position vectors of objects A and B are < 150, —100, 400 > m and
< 550, -400, —200 > m respectively. A and B travel with constant velocity
<50, -20, -50 > and < -25, 50, 40> ms_1 respectively.
(a) Find when A and B are 150 km apart.
(b) Find the minimum distance between A and B and state when this occurs.

6. At 12 noon, object H travelling with constant velocity <90, -100, 100 > ms_1 is sighted
at the point with position vector <0, —100, 200 > m. At 1.00 pm object J travelling with
constant velocity < —50, 100, 100 > ms_1 is sighted at the point with position vector
<-200, —240, —200 > m respectively. Use vector methods to find:

(a) the minimum distance between H and J and state when this occurs
(b) when H and J are 1000 m apart.

7. At 0800 hours, the position and velocity vectors of particles A and B are respectively
<100, 90, 80 >m , < 10, —40, 60 > ms_1 and <-200, 150, —80 > m and

<22,-42.4,66.4 > ms_l. If these velocities were maintained show that A and B will
collide stating when and where the collision will occur.

8. At 6 am, hot-air balloons A and B leave their anchorage points located at < -20, 50, 0.2 >
km and < 7, 80, 0.35 > km with constant velocities < 20, 80, 0.8 > kmh_1 and

<-16, 40, 0.6 > krnh_1 respectively. Use a relative velocity method to show that if these
velocities are maintained, A and B will collide. State where and when this collision will
occur.

9. At 2 pm, remotely controlled drone P leaves its base located at < 50, —20, —0.3 > nautical
miles with constant velocity < 70, 50, 2 > knots. One hour later, another drone Q leaves a
base located at < 345, 165, 0.2 > nautical miles with constant velocity <-80, —40, 3 >
knots. Use a relative velocity method to show that if these velocities are maintained, Q
will intercept P. State where and when this interception will occur.

10. At 7.00 am, the position and velocity vectors of particles A, B and C are respectively
<1,5,-10>km,<6,4,5>kmh ;<6,-5,20>km,<3,6,-1>kmh  and
<9,1,2>kmand <4,5,2> kmh_l. If these velocities were maintained, use vector

methods to determine which of these particles will collide. State when and where the
collision(s) will occur.
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11. The position vectors of submersibles R and S at time ¢ seconds are given by
r, =<0,-500,-40>+¢<x,y,z>mand

rg =<800, 1300, —80> + £ <4, 6, —0.15 > m respectively.

(a) Find in terms of x, y and z, the velocity of R relative to S.
(b) Find the initial displacement of S relative to R.

(¢) Given that |<x, Wz >| = /50.04 ms_l, and all velocities are maintained with the
two submersibles eventually colliding, use your answers in (a) and (b)
to find x, y and z.

12. The position vectors of objects A and B at time # seconds are given by
r,=<1,2,-4>+¢<-1,2,01>m and ry; =<-19,-13,-1>+¢<x,y,z>m

respectively. Given that |< X,z >| =+ 10, and all velocities are maintained with the
two objects eventually colliding, use a relative velocity method to determine x, y and z.

13. Find the point of intersection (if they exist) of the paths of the particles A and B as given
below:
(@ r,(0)=<0,0,0>m, v, =<0,0,0>m/s;
rz(0)=<6,10,-10>mand v, =<-2,1,2>m/s
(b) r,(0)=<-10,5,10>m, v, =<0, 0, 0> m/s;
rz(0)=<0,0,0> mand v, =<-2,1,2>m/s
(¢) r , (0)=<20,-5,-10>m, v, =<10,-5,-14 > m/s;
ry(0)=<-30,10,8>mand v, =<20,-5,-2>m/s
(d) r,(0)=<80,-70,200>m, v, =<-20, 10, -40 > m/s;
r5(0)=<-10,-100,90 > mand v, =< 30, 30, 10 > m/s

14. At 8 am, the position vectors of unmanned aerial vehicles A and B are
<-200, 100, 2 > km and < 100, -20, 1 > km respectively. A and B travel with constant
velocity < 70, 250, 1 > and <-30, 70,2 > kmh_1 respectively.
Determine if the two vehicles collide or if the paths of these two vehicles intersect or
none of the above.

15. At 1 pm, object E flying with constant velocity < 10, 10, 0.3 > ms—1 is sighted at the point
with position vector <20, 0, —1.4 >m. At 1 pm object F flying with constant velocity
<8,10,0.2> ms s sighted at the point with position vector <30, -90, 0.9 > m.
Determine if these two objects collide or if the paths of these two objects intersect or
none of the above.
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09 Geometric Proofs using Vectors

9.1 Plane Geometry

¢ This section extends the work started in the previous unit (Chapter 12 of Units 1
& 2) on the use of vector methods to prove properties of several planar shapes.

Example 9.1 Internal Division of a line segment

The collinear points A, B and C have position vectors a, b and ¢ respectively. The point B
divides the line segment AC internally in the ratio A : p, where A >0 and u > 0.

That is, pAB = ABC. Prove that b = 11—(ua +Ac).
+

Solution:
pAB=ABC = wb-a)=nc-D>)
ub +Ab=Ac+ pa
b= L(ua +Ac).

A+p
Example 9.2 The Cauchy—Schwarz Inequality & The Triangular Inequality
Given the vectors a and b, prove that:
(a) la.b| < Ial 5] The Cauchy—Schwarz Inequality
(b) la+b| < |al + 5] The Triangular Inequality

Solution:

(a) a.b= lal |b| cos O where O is the angle between a and b.
laes|=1allbl]cos o]
But -1<cos8<1 = |cos8]| <1
Hence,|a.b|§|a||b|.

2
) la+b| =@+b)+(@+b)
=a-a2+b-b;-2aob
=|a| +|b| +2a.b
Sincela.b|§|a||b| = a-b§|a||bl.
2 2 2
Hence, |a+ b <l|al™+ bl 2+2|a||b|
<(lal + |8])
= la+bl<lal +]b].
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Example 9.3 Property of a rhombus
Prove that the diagonals of a rhombus are perpendicular.
Solution:
Let OABC be a thombus with OA parallel to CB. Cc B

Let OA =a and OC =c.
As OABC is a rhombus, |a| = |c|

Diagonals: OB=a+c
AC=-a+c o > A

OB.AC=(@+c)e(-a+c)
=—aqeaqtaec—ceatcec
=—lal*+ el
=0

Hence, the diagonals are perpendicular.

Example 9.4 Area of Parallelogram

OABC is a parallelogram with OA parallel to CB. Let OA =a and OC =c.
Prove that the area of the parallelogram OABC is laxecl.

Solution:

Let 0 be the angle between & and c. C B
Let K be the foot of the perpendicular from C to OA.

1

i

Hence, |CK| = |OC| sin © i
=|c|sin9. 8 h

K

Area of OABC = |0A| x |CK]|
= |al X |c| sin O

=|a><c|.

Exercise 9.1

1. The collinear points A, B and C have position vectors a, b and ¢ respectively. The point
B divides the line segment AC externally in the ratio A : p where A > 0 and p > 0.

That is, pAB = ACB. Prove that b = %( pa—Xic).
u E—

2. The collinear points A, B and C have position vectors a, b and ¢ respectively. The point
B divides the line segment AC in the ratio —A : i where A >0 and p > 0.

That is, uBA = ABC. Prove that b = _17—\,-( pa—Xic).
u —
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Given the vectors a and b, prove that:
@ |lal-|sll<la-bl

2 2 2 2
(b) |a+b| +|a—b| =2|a| +2|b| .
Consider AOAB with OA = a4 and OB = b. If OM is a median of the triangle,

prove that OM = % (a + b).

In quadrilateral OABC, if M and N are the midpoints of OA and CB respectively,
prove that MN = % (OC + AB).

Prove that the sum of the lengths of any two sides of any triangle is always greater than
the length of the remaining side.

. Prove that in a parallelogram, the sum of the squares of the lengths of the diagonals is

equal to the sum of the squares of the lengths of its sides.
Prove that the midpoints of the sides of a quadrilateral form a parallelogram.

C is the midpoint of the line segment AB. D is a point not on the line AB
such that DC = CA. Use vector methods to prove that DA is perpendicular to DB.

*10. Three line segments are congruent to the non-parallel vectors a, b and c respectively.

11.

12.

Prove that these line segments form a triangle iff a + b+ c=0.

PQRS in the accompanying diagram is a convex P

quadrilateral. The diagonals intersect at O. Prove that V Q

the sum of the lengths of any two opposite sides of the

quadrilateral will always be less than the sum of the

lengths of the two diagonals. R
S

O is the centre of a circle circumscribing AABC
with OA =a, OB = b and OC =¢. M is a point
such that OM = m.

Prove that if m =a + b + c then
AM.BC=BM.AC=CM.AB=0.

[The point O is called the circumcentre and the
point M is called the orthocentre of the triangle.]

\s\\

e

- ——
~— o
"

o

.,
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13. Consider AABC where the vertices have position
vectors a, b and ¢ respectively. The point M with
position vector m is the midpoint of the side BC.
The point K with position vector k is such that
AK =2KM.

(a) Prove that k= %(a +b+c).

(b) Hence, deduce that the medians of a triangle B
are coincident.

A
1
i
\
)
i
1
\
i
i
1
A
t
1
i
1
1
.
1
i
\
\
i

[This point is called the centroid of the triangle.]

14. AOAB is such that OA = a and OB = b. Prove that the area of AOAB =

15. OABC is parallelogram with OA =a and OC =c.

16

© O.T.Lee

P is a point on OA such that OP = AOA where
0 <A <1. Qisapoint on AB such that AQ = pAB

=2

where 0 < p < 1. Use vector methods to prove that

the area of ACPQ cannot exceed half the area of the
parallelogram OABC.

. Consider AOAB with OA = ¢ and OB = b.
P is a point on OA such that OP =A0A and S
is a point on OB such that OS = AOB where
where 0 <A <1. Q and R are points on AB
such that PQRS is a parallelogram. Use
vector methods to prove that the area of

parallelogram PQRS cannot exceed half the
area of AOAB.
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9.2 Geometry in 3D Space

e In this section, we will explore some geometrical properties of shapes in 3D space.

Example 9.5
The point A has position vector < a, B, v >. Prove that the shortest distance between the point

ao+bB+cy+d

\/a2 +b2% 42

A and the plane ax + by + cz+d=01is

Solution:
Vector equation of plane is 7« <a, b, ¢ >=—d.

Clearly, the point with position vector < 4 , 0, 0> lies on this plane.
a

Hence, shortest distance between point and plane is:
1

d
D=|(<0,B,y>-<-=,0,0>)s ~——u<a,b,c> |
a Ja? +b% +¢?
= l <0'+£1—7B3’Y>°——1———_<a3b9c> |
a a® +b% +ec

ao+bB+cy+d

\/a2 +b2 +c2

Example 9.6

OABCDEFG is a cuboid (rectangular prism) with OA = u,
OC =y and OE =w. O is the origin of the x-y-z axes.
Prove that the volume of the cuboid is | (Hxv)ew l.

Solution:

Area of the base OABC = | u X v| .
Height of cuboid is | w| .

Hence, volume of cuboid = |u b v| |w|
But u x v is parallel to w,
that is, the angle between u X v and w is OO or 1800.
Hence, cos Oo= M or cos 1800= M
|uxv]||w| |uxv||w|
= iluxvl |w| =(uxv)ew
Hence, |u><v||w[=|(u><v)-w|.

Therefore, volume of cuboid is | (uxv)ew .
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Exercise 9.2

1. OABCDEFG is a rectangular prism. O is the :

origin of the x-y-z axes. The position vectors

of vertices A, Cand E are @, cand e . G

respectively.

(a) Provethata xc=Ae.

(b) Prove that the area of BCEF is
| ax(e-c) l.

(c) M is the midpoint of AB. Prove that the

areaofAMEDis—;-|c><(a+%c—e|. A

(d) Prove that the volume of the wedge x
OABCGF = % l(@xc)eel.

2. OABCDEFG is a cube. O is the origin of the :
x-y-z axes. The position vectors of vertices A,
C and E are a, c and e respectively. y

(a) Show that the equation of the largest
possible sphere that can fit into the cube F
. a c e |
1S |r—<—, -, = >| = — |a|.
2 2 2

(b) The cube fits into a sphere. Show that
equation of the smallest possible sphere A
that the cube can fit into is

|r_<£a£a 'e_ > =l |a+C+e|-
2 2

3. OABCDEFG is a parallelepiped. O is the :
origin of the x-y-z axes. The base OABC is a

rectangle. The edges AF, BG, CD and OE
are all parallel and congruent. The position /

vectors of vertices A, C and E are

a, ¢ and e respectively. The angle between ‘/
OE and the z-axis is 0.

(a) Prove that OG + BE = 2e.

(b) Prove that total surface area of A £
OABCDEFG /
=2[|a><c|+|a><e|+|e><c|] *
(axc)ee

(c) Prove that cos 6 = .
laxc||e|

(d) Prove that the volume of OABCDEFG is | (axc)ee l .
[The volume of a parallelepiped = Base Area x Perpendicular Height.]
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4. VOABC is a rectangular pyramid. O is the : v
origin of the x-y-z axes. The vertex V is
vertically above the centre K of the
rectangular base OABC. The vertices V, A

and C have position vectors v, @ and ¢

Y A4
respectively. ¢
(a) Prove that the total surface areaofthe /7 = ﬁc;\)&’/
pyramidis |vx a| + [vxe| + |axel. Iy~ - ™
(b) Prove that the area of AVAC is . / &

%|(a—v)><(c—v)|.

(c) Prove that the volume of the pyramid is % | (@axc)e(v— %(a +¢) |.

5. ABCDEF is a wedge with congruent rectangles
ABCD and EFCD with equations
re<l1,2,2>=10andr.<2,1,2>=4
respectively. | DA l = | DE | = x/ﬁ .
(a) Prove that CD is parallel to <2, 2, -3 >.
(b) Prove that DE is parallel to < 10, -7, 2 >.

8
5 A
(c) Prove that DA is parallel to <7, -10, -2 >, D
8
5 |
D

C E

17J17
T

(d) Prove that the area of AADE = e

6. ABCDEF is a wedge with congruent rectangles
ABFE and CDEF with equations
re<l,1,2>=6andr.<-1,1,1>=3
respectively. | EA| = |ED| = V42 .

(a) Prove that EF is parallel to <1, 3, -2 >. £

3

(b) Prove that ZAED = cos™! (T .

(c) Use a vector method to prove that the area of AAED = 7.
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10 Systems of Linear Equations

10.1 3 x 3 Systems

e A 3 x 3 system refers to a set of 3 simultaneous linear equations in 3 variables.
apx taiytax=a;
b()x =+ bly + ng = b3
cox Tt ciyteax=cs

e As noted in Section 7.3, the equation of a plane may be expressed as a linear
equation in three variables. Hence, a system of three linear equations in x, y and z
may be expressed geometrically as three planes in the x-y-z space.

e For a set of three planes in 3D space, three major scenarios are possible.

o The three planes meet at a common point.
« The 3 x 3 system has a unique set
of solutions.

o The three planes are all coincident
or two planes are coincident and meet the third
plane along a common line
or the three planes meet along a common line.
«» The 3 x 3 system has an infinite
number of solutions.

¢ The three planes are all parallel
or two planes are coincident and parallel to the
third plane
or two of the planes are parallel but not the third
or the three planes form a prism.
« The 3 x 3 system has no solution.
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10.2 3 x 3 Systems with Unique Solutions

¢ In this section,we will consider only those 3 x 3 systems that have unique solutions.
We will learn to use the Gaussian elementary row operations method to determine
the unique solution.

10.2.1 The Gaussian Elimination Method for 3 x 3 Systems

e The Gaussian elimination method makes use of augmented matrices, elementary
row operations and back substitution to solve a set of simultaneous equations.

e The equations are first rewritten as augmented matrices.

o For example: x+y+z=1
x+3y+2z=2
2x-y+2z=-1
1 1 171
Rewritten as an augmented matrix: 1 3 2|2
2 -1 2|-1
coefficients of x, y and z. constants

¢ An augmented matrix in echelon form (triangular form) is one where all entries
above or below any one of the diagonals in the coefficient part are zero.
1 2 3]10 1 0 0|2 0 0 3|2 1 2 3|2

e |0 2 1|5],|1 2 0{0|,{0 2 1|0|,|1 2 0]0
0 0 1|3 2 2 1|13 \1 2 1|3 1 0 03

are examples of augmented matrices in echelon/triangular form.

¢ An augmented matrix in echelon form permits the immediate retrieval of the
value of one of the variables. Values for the remaining variables are then
obtained by back substitution.

1 2 3(10
» Consider the augmented matrix in echelonform |0 2 1| 5 | fora
0 0 1|3

system with variables x, y and z.

o The third line is equivalent to the equation z = 3.
We have an immediate solution for z.

« The second line is equivalent to 2y + z = 5.
Butz=3 = y=1.

« The first line is equivalent to x + 2y + 3z =10
Butz=3andy=1 = x=-1.

« Hence, the solution to this system isx=—1,y =1 and z = 3.
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0 02
1 0| 0]isan augmented matrix in reduced echelon/triangular form.
0 1|3

°
[ R R

« All entries in a diagonal of the coefficient part are one
and all other entries are zero.

e It allows immediate reading of the solutions of the system.
If the are variables x, y and z, then isx =2,y =0 and z = 3.

¢ In summary, the Gaussian elimination method uses elementary row operations to
reduce an augmented matrix into echelon form. This will allow the retrieval of an
immediate solution. Back substitution is then used to determine the rest of the
variables.
¢ Row operations are similar to the “tweaking of pairs of equations”
to eliminate a variable.
o It is not always necessary to end with an augmented matrix in echelon
form.

Example 10.1

Solve each of the following augmented matrices with variables x, y and z:

1 0 02 0 0 3|3 1 2 -1]2
@ |1 2 0|0 ) (0 2 11| (|0 1 05
2 2 1|3 1 2 13 2 -1 0|3
| Solution:
i (a) Fromrow 1: x=2
| From row 2: x+2y=0 = y=-1
. From row 3: 2x+2y+z=3 = z=1
Hence: x=2,y=-landz=1
! (b) From row 1: z=
From row 2: 2y+z=1 = y=0
From row 3: x+2y+z=3 = x=2
Hence: x=2,y=0andz=1
(¢) From row 2: y=35
From row 3: 2x-y=3 = x=4
From row 1: x+2y—z=2 = z=12
Hence: x=4,y=5andz=12

© O.T.Lee 138




10 Systems of Linear Equations

Example 10.2

Without the use of a calculator, use Gaussian elimination to solve for x, y and z in:

2x —y+4z=15
3x+2y—z=5
x+ty+z=4
Solution:
Gaussian Elimination Algebraic Elimination
Rewrite system as an augmented matrix Rewrite the equations as:
with the third equation ahead of the rest: x+ty+z=4 |
1 1 114 2x—y+4z=15 II
2 -1 4|15 3x+2y—-z=5 III
2 -1|5
3 Eliminate x from I & II:
Ix2 2x+2y+2z=8 Ia
Apply row operations on Row 1 & Row 2 la—T1I 3y—2z=-7 I\
and Row 1 and Row 3:
Eliminate x from I & II:
11 114 Ix3 3x+3y+3z=12 1b
2RI-R2|0 3 -2 |-7 b 111 y+dz=17 \Y

3RI-R3{0 1 4 7
Hence, equations are reduced to:

3y—2z=-7 v
y+dz=7 v
Apply row operaiuonls oanov: 2 & Row 3: Eliminate y from IV & V:
Vx3 3y+12z=21 Va
03 2|7 Va-1V 14z =28
3R3-R2\0 0 14 | 28 = z=2
Substitute z =2 into V:
Fromrow 3, 14z=28 = z=2 . y=—.1
Substitute z = 2 into Row 2: y=—1 | Substitutez=2,y=—linto L
Substitute z=2,y=—1 into Row 1: x=3 x=3.
Hence,x=3,y=-1,z=2. Hence,x=3,y=-1,z=2.

Notes:

o As seen in the example above, the Gaussian elimination method is a “trimmed down” version of the
method of algebraic elimination.

o The row operations applied are identical to the operations applied to the equations in the algebraic
method.

o Where possible, rearrange the order of rows/equations so that the first coefficient (pivot element) is one.
Conventionally, we wish to obtain a triangle of zeros at the bottom left.
This is achieved by: (i) combining rows I and 2, (eliminate x from equations I & II)

(ii) combining rows 1 and 3 (eliminate x from equations I & I1I)
(iii} combining the “new” rows 2 and 3 (eliminate y from resulting equations).
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Example 10.3
Without the use of a calculator, use row operations to solve:
2x—y+2z=-1
xty+z=1
x+3y+2z=2
Solution:

Rewrite the system as: x+ty+z=1
x+3y+2z=2
2x—y+2z=-1

1 1 1|1

Rewrite as an augmented matrix: 1 3 2|2

2 -1 2|-1

Use row operations to create a lower triangle of zeros:

1 101

R1-R2->R2 0 -2 -1|-1 [1]
R1x2-R3—>R3 0 3 03
1 1 11

0 -2 -1]-1 [2]

R2x3+R3x2—>R3 0 0 -=31|3

From row 3: -3z=3 = z=- 11 11 -
From row 2: —2y—z=-1 = y= rref(l:l 3 2 2]
From row 1: x+ty+tz=1 = x=1 2-1 2 -1
1881
0181
Hence: x=1ly=1,z=-1 L a1 _1i|
o
Notes:

e [t is customary to rearrange the equations so that the element in the first row and first column (called
the pivot element) is “one”. The row operations are much simpler when the pivot is “one”.

o The augmented matrix in [2] is in echelon form.

o However, notice that the augmented matrix in [1] is not in echelon form but yields an immediate
solution and back substitution would be successful.

As such, it would have been sufficient to stop at [1].

o Hence, if during the process of reducing an augmented matrix into echelon form, an immediate
solution emerges and back substitution would be successful, it is no longer necessary to proceed to
obtain an echelon form.

o The “rref”command available on CAS calculators, produces an augmented matrix
in reduced echelon form. [rref: reduced row echelon form]
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Exercise 10.1 This exercise is to be completed without the use of a calculator.

1. Solve for x, y and z (in the usual positions) corresponding to the augmented matrices.

1 3 %6 1 4 1]|-4 1 % %
(& |0 1 5|11 b)) 10 1 X| % 0|0 1 210
0 1|2 0 0 143 0 0 1|2
L1 57 1 3 1]6 01 0|-4
@ [0 1 %|% @ [0 1 01 ®lo 1 1]2
0 0 1]3 01 1|2 1 0 1|3
1 1 2 1 1|5 2 0 0|4
(g |0 2 1|38 )y |0 -1 1|7 @1 -1 4|-6
01 2|10 0 4 -1|13 1 1 -1|8
2. Use elementary row operations to solve:
(a) x+2z=7 (b) 2x+y=0
2x+y=16 x+2z=4
—2y+9z=-3 -2y+9z=19
(¢) 2x—-y+4z=12 (d) —-3y—-4z=1
4x+y=6 3x-4z=4
“3x+2p+z=4 —-2y+4x=1

3. Use Gaussian elimination to solve for x, y and z in:
(@ 2x+y+z=7, 3x+2y—-z=15 and x -2y +2z=-8
(b) 2x+3y+2z=0, 3x+2y+4z=13 and x+y+z=2
() x+ty+z=12, x—y+z=3 and2x+3y-32=6
(d) x+y+2z=4,x+y—-2z=3 and3x+4y+2z=12

4. Use an augmented matrix method to solve:

(a) 2x-y—z =0 (b) 2x+5y=180-6z
4x—-y+2z-4=0 6x +z=20+3y
2x+2y+z-4=0 Sy—2z=45-"Tx

(©) 2x+3ly—1/z=-T d) A+ =2

x+2y+1/z=-3 2x2—2y2+3zz= 5
5k—1/y+3/z=2 3x2+y2—522=6

5. Use the method of elimination to solve:

(@ x+y+z=-1 (b) x+2y+3z=1
x+2y+z=1 2x+y—-3z=-9
2x+y+z=0 x+3y+z=-7
x+y+2z=-5 Ix+y—z=-7
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Example 10.4

When Wayne emptied his coin wallet, he counted a total of 23 fifty cents, twenty cents and
ten cents coins. The number of fifty cents and twenty cents coins was three more than the
number of ten cents coins. The total value of these coins came to $5.10. Use Gaussian
elimination to find the number of fifty cents, twenty cents and ten cents coins in Wayne’s
wallet.

Solution:

Let x: No. of fifty cents coins, y: No. of twenty cents coins, z: No. of ten cents coins.

x+ty+z=23
x+ty—z=3
50x + 20y + 10z=510

1 1 1]23

Rewrite as an augmented matrix: 1 1 -1 3
50 20 10 |510

Use row operations to create a lower triangle of zeros:

1 1 1 |23
R1-R2—> R2 0 0 2 120
R3-20xR1—R3 \30 0 -10]50

From row 2: 2z=20 = z=10
From row 3: 30x — 10z=50 = x=

From row 1: x+ty+z=23 = y=38
Hence: x=5,y=8andz=10.

Exercise 10.2

1. A fast food restaurant offers three types of happy meals; A, B and C. The Jack family
buys four A meals, one B meal and two C meals for $36.50. The Mack family buys one
A, three B and one C meals for $23.10. The King family buys two A, two B and five C
meals for $50.10. Use your calculator and the method of Gaussian elimination to find the
cost of each of these types of happy meals.

2. A builder uses three types of windows A, B and C. For model home P, he uses 6 type A,
2 type B and 1 type C windows. The corresponding numbers for model homes Q and R
are 2, 6 and 3 and 3, 4 and 4 respectively. In a certain year, the builder used 157 type A,
166 type B and 109 type C windows. Given that these are the only types of houses he
builds, use your calculator and the method of Gaussian elimination to find how many of
each type of home he built.
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3. ComputerWest assembles and sells 3 versions of a Notebook computer. Version A
requires 3 pieces of component P, 5 pieces of component Q and 7 pieces of component R.
The corresponding numbers for version B and C are respectively, 1; 1, 1 and 4, 8, 16.

In December 2015, 790, 1 410 and 2 510 pieces of component P, Q and R respectively
were used. Use your calculator and the method of Gaussian elimination to find how
many of each version of machines was assembled that month.

4. Helen, Catherine and Frances bought tickets for three separate events. The table below
shows the number of tickets bought by each person.

Helen Catherine Frances
NBL Final 3 2 1
AFL Final 2 3 5
Concert 5 1 4

If the total cost for Helen, Catherine and Frances were $267, $145 and $230 respectively,
use your calculator and the method of Gaussian elimination to find the cost for each of
these events.

5. A fish of species P each day consumes 8g of food A, 5g of food B and 3g of food C.
A fish of species Q each day consumes 5g of food A, 3g of food B and 2g of food C.
A fish of species R consumes 3g, 1g and 1g respectively of food A, B and C. If a given
environment has 310g of food A, 170g of food B and 115g of food C, use your calculator
and the method of Gaussian elimination to find the population size of each of the three
species that will consume exactly all of the available food in: (a) one day (b) five days.

6. A supermarket sells 3 types of Christmas hampers during the Christmas season. Hamper
A has no wine and 2 cans of beer and twice as many cans of cool drinks as cans of beer.
Hamper B has 6 cans of cool drink and an equal number of cans of beer and half as many
bottles of wine as there are cans of beer. Hamper C has 4 cans of cool drinks, 2 bottles of
wine and as many cans of beer as there are cans of cool drinks and bottles of wine
combined. A worker who prepares the hampers makes use of 202 cans of cool drinks,
218 cans of beer and 81 bottles of wine. Use your calculator and the method of Gaussian
elimination to find the number of each type of hamper that the worker made up.

7. The diagram below shows the volume of traffic flow (in vehicles per hour) through an
intersection between 7.30 am and 8.30 am on a weekday. Assume that no cars are stalled
at the intersection. Use your calculator and the method of Gaussian elimination to find
the values of x, y and z.

Tz

West x+70

Y e ] East
Y lx+100 S

2x 4——' < < x+ 2y

- |

Sotith
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8. The schematic diagram below shows the volume of passengers (in tens of thousands)
through the airports, A, B, C, D, E, F and G in a certain month. Without the use of a
calculator, find the values of x, y and z if there are 10 000 more arrivals than departures at
C, 20 000 more departures than arrivals at D and an equal number of arrivals and
departures at E.

9. A certain protected mammal has a maximum life span of 10 years. Let x;, x and x3 be
the numbers of the mammal in each of the age groups 0 — 1 years, 2 — 8 years and 9 — 10
years respectively, and y, ¥, and y3 be the corresponding numbers after one calendar
year. The numbers x;, x2, X3, ¥1, 2, and y3 satisfy the equations:

0.05x; +0.75x2 + 0.2x3 =y,
0.85x; +0.99x; =y,
O.QXZ =JV3
If at the start of 2015, there were 1 340, 2 108 and 340 in the corresponding age groups,
use your calculator and an elimination method to find the corresponding numbers in each
age group at the start of 2014.

10. A toy manufacturer markets building bricks in 3 packs. Pack B contains twice as many
red bricks as Pack A and Pack C contains 5 times as many red bricks as Pack A. There
are twice as many blue bricks as red and white bricks combined in the 30 bricks
contained in Pack A. There are 4 times as many white bricks as red bricks in Pack A.
The ratio of the red to white to blue bricks for Packs Band Care 2 : 8 : 15 and
1:3:5 respectively.

(a) Describe the composition of bricks in Pack A.

(b) Use your calculator and the method of Gaussian elimination to find the number of
units of each of the different Packs that will fully utilise a stock of 11 990 red bricks,
40 460 white bricks and 76 200 blue bricks.
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*11. A minipak consists of 2 chocolate eclairs, 1 mintie and 2 lollipops. A midipak consists
of 3 chocolate eclairs, 1 mintie and 7 lollipops. A maxipak consists of 5 chocolate
eclairs, 2 minties and » lollipops. Jane had 94 chocolate eclairs, 38 minties and 166
lollipops. Use your calculator and the method of Gaussian elimination to find the value
of n so that each and every type of sweet available is used up. The composition of each
pack is as stated.

*12. The diagram below shows the
flow (in litres/hour) of fluid
through a network of pipes. The
numbers or letters indicate the A C D
flow rate through the pipe —»52 —»7y-10  ——» 50
concerned. Assume that no fluid \32
is lost in the process.

(a) Find the values of x, y and z
when k=2.
(b) Comment on the flow
network when k£ <0.
(c) Find the value of k for which the network flow as indicated becomes impossible.

13. Givena=<1,-1,1>anda x b=<1, 4, 3 >, use Gaussian elimination to find b.

14. Givenb=<2,1,1>anda x b=<6,—-13, 1 >, use Gaussian elimination to find a.

10.3 Existence of Solutions for 3 x 3 Systems

o At the start of this chapter, it was mentioned that a 3 x 3 system can either have:
 aunique set of solutions
e an infinite set of solutions
e no solutions at all.

e In this section, we will explore in greater detail the conditions that cause
3 x 3 systems to be divided into these three possibilities.
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e Consider the following cases.

Unique Set of Solutions
1 1 112 1 0 01
Consider [1 1 2|3 | whichreducesto|0 1 00
2 3 214 0 0 1|1

« This set has a unique set of solutions.

» All three equations are different and form a
non-contradictory consistent set.

 The three planes meet at a common point.

Infinite Number of Solutions

111
Consider |1 1 1
1 11

1
which reduces to | 0
0

1
1 | respectively.
0

¢ Note that in each instance, each term in the third
row of the reduced augmented matrices is zero.

» This means there is insufficient information
to determine a unique set of solutions.

 Hence, these systems have an infinite number
of solutions.

» The first set consists of three identical rows.

« There is actually only one distinct plane.
« Hence, there are an infinite number of points
of contact.

« The second set consists of two identical rows and a
non-contradictory third row.

« There are actually only two distinct planes.

« These planes meet along a common line.

« Hence, there are an infinite number of
points of contact.

o The third set consists of three rows but the third
row is a linear combination of the first two rows
(R3=R1+2xR2).

o These 3 planes meet along a common line.
« Hence, there are an infinite number of points
of contact.

1 10
0 01
000

rref([

rref([
23

rref({
33

11
11
11

11
11

11
11

LBl ]

i |3
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10 Systems of Linear Equations

No Solution
11 1|2 11112 1 1 12
Consider |1 1 1{3],[1 11 2J, 1 1 1}3|and
1114 111]3 1 2 1|3
1 1 12 1 1 10
1 1 23| whichreducesto |0 0 0|1/,
2 2 3|6 0 0 0|0
1 1 1[0 1 0 110 1 1 0]1
0 00|1{,|]0 1 ololand|0 0 1|0
0 0 00 0 0 01 0 0 01
respectively.

e In the reduced matrices, note that in each instance,
there is one row that is contradictory: R2, R2, R3
and R3 in sets 1, 2, 3, and 4 respectively. Each of
these rows imply that 0 = 1.

« Hence, these systems have no solutions.

o The first set consists of three “contradictory” rows. 1112 A
« The three planes are all parallel. rref(_i D1 2]
« Hence, these planes do not intersect. [1119]
e The second set consists of two identical rows and a Lt
third row that “contradicts” the first two. rref 1 11 2]
o There are actually only two distinct parallel i
planes. 000l
« Hence, these planes do not intersect. rref(ri 11z
L1 2 3
 The third set consists of two contradictory rows [é To g]
(R1 & R2) and a third consistent row. A
o There are two parallel planes and a third ref1 122
plane. i Ti1o0
« Hence, the first two planes do not intersect. [3 3 é ?] |
But the third intersects the first two and g >

hence, there is no common point/line of
intersection between these planes.

o The fourth set consists of two consistent rows but
the third row “contradicts” a linear combination
of the first two rows (R3 #R1 + R2).
« These three planes will meet to form a prism.
« Hence, these planes do not intersect.
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e [n summary,

2 3 419
consider the augmented matrix in echelon form: |0 1 4 |5
0 0 plg

o If p # 0, then the system has a unique set of solutions.
e If p =0 and g = 0, then the system has an infinite number of solutions.
o If p=0 and g # 0, then the system has no solution.

o If any of the equations are multiples of each other, or the equations are linear
combinations of each other, then the system has an infinite number of solutions.

o Ifthe coefficient parts of any two equations are multiples or linear combinations of
each other but “contradict” in the accompanying constants, then the system has no
solution.

o For example: « x+y+z=1 and 2x+2y+2z=1.
The coefficients in the second equation are each twice
those of the first equation, but the constant in the second
equation is not twice the constant in the first equation.
. x+y+z=1,x+2y+3z=4and 2x + 3y +4z=8.
The LHS of the third equation is the sum of the first two
equations but the right hand side is not.

Example 10.5

1 -1 1 5
For the augmented matrix { 0 1 5 6 |,

0 0 (p—D(p+2)|p+2

find the value(s) for p so that the given system has:
(a) aunique set of solution (b) no solution (c) an infinite number of solutions.

Solution:
(a) For a unique set of solutions: @-DE+2)=0
Hence: p#l and p#-2,p eR.
(b) For no solution: pP-D@E+2)=0agnd p+2+0
Hence: p=1

(c) For an infinite number of solutions: (p—1)(p+2)=0 gnd p+2=0
Hence: p=-2.
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Example 10.6

1 -1 1 4
For the augmented matrix { 0 1 1 -3

0 0 p’-1|g-2
find the value(s) for p and ¢ so that the given system has:
(a) aunique set of solution (b) no solution (c) an infinite number of solutions.

Solution:
2
(a) For a unique set of solutions: p —1#0 with g eR
Hence: p#1 and p#-1, p eR withg eR
. 2 .
(b) For no solution: p —1=0 with g—-2=0
Hence: p==1 with g#2, g eR.

2
(¢) For an infinite number of solutions: p —1=0 with g—2=0

Hence: p==1 with g=2.
Example 10.7
Consider x+y+z=3, x2y+tz=6, x—-y+tkz=m

Find the value(s) of £ and m so that the given system has:

(a) aunique set of solution (b) more than one solution (c) no solution.
Find the solutions (in terms of k and m) in (a) and (b).

Solution:
1 1 113
Augmented matrix: 1 -2 1|6
1 -1 k|m
11 1 3
Using elementary row operations: R1—R2 — R2 03 O -3
R1-R3—>R3 0 2 1-k|3-m
1 1 1 3
0 3 0 -3
R2x2-R3x3—R3 0 0 -30-k)|3(m-5)
(a) For a unique set of solutions: k#1 and m eR
From row 2: 3y=-3 = y=-L [1 11 3] 4
m—5 rref(|1 -2 1 6
Fromrow 3: -3(1-k)z=3(m-5) = z=—— 1tk " s
- 188 —k_—1+4
From row 1: x+(—1)+m~5=3 = x=—m—_5—+4 EilE‘-mi—s
k-1 1-k _ =Y
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(b) For more than one solution: k=1 with m=5.
From row 2: y=-1.
From row 1: x=1+z=3 = x+z=4
z=4 —~x.
Hence solutions are of the form: x=ty=-l,z=4-t,teR.
(c) For no solutions: k=1 and m#5,meR.
Notes:

o The infinite set of solutions in (b) is described in parametric form.
This represents the parametric equation of the common line of intersection.
The equivalent Cartesian equation of this lineisx =4 —z, y = —I.

Exercise 10.3

1. Explain why the following sets of simultaneous equations have no solutions:

(a) x+ty+z=2 (b) 2x+y—z=-2
2x+2y+2z=-4 x+2y+z=0
x+2y+z=2 3x+3y=-1

(¢) x—py+3z=18 d —x+y-2z=-3

—x+y-3z=15 4x+2y—-62=16
2x+y+z=-2 Sx+y—-4z=38

2. Explain why the following sets of simultaneous equations have more than one solution:

(a) xX—y+z=5 (b) x+2y+3z=4
2x-2y+2z=10 x+2y-z=0
x—2y+z=8 z=1
(¢) x+2y-3z=1 d —x+y-2z=-3
—x+y+z=1 4x+2y—6z=16
x+5y—-5z=3 5x+y—-4z=19

3. Find the value(s) of the unknowns for each of the following systems to have
(1) a unique set of solution, (ii) no solution and (iii) an infinite number of solutions.

11 1] 7 11 1 7
@ |01 2] s ®lo1 2| s

00 plg-1 0 0 3-p|2g-1

11 1|7 11 2 7
© [0 0 p+1|5 @ |0 1 -1 5

01 2 |- 0 0 (p=D)(p+2)|q-1

12 1 10 1 4 1 5
) |0 1 3 4 ®lo -1 2| 3

0 0 (p+D)(p+2)| p+2 0 0 p-3|p>-9
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4. Find the value(s) of & so that each of the following systems have
(i) no solution (ii) a unique set of solution and (iii) more than one solution.
Find the solutions in (ii) and (iii).

(a) x-Ty+5z=3 (b) 2x—-y+z=7
x—-y+3z=-1 3x-5Sy+hkz=16
Jy—z=k x—4y+3z=9

(¢) S5x+2y+3z=4 (d x+3y+4z=4
2x-3y—-z=1 2x+y+3z=3
llx—ky=k S5x-10y-5z=k

5. For what values of & does the system, x+ 11y +2z=0, x +2ky+2=0, kx+y+z=0
have solutions other than x =y =z=0.

6. Consider the system of equations: x+y+z=8, 2x+y—-z=-5and 3x-y+kz=3.
11 1 8
The augmented matrix for this system of equations is reducedto [0 1 3 |21|. Find

0 0 a+dbk |63
the values of g and b.
7. Consider the system of equations:
x+3y+z=16 x+4y=-3z+23 x=19-2y—-4z x+5y+3z=p
(a) Write the augmented matrix for this system of equations.
# 4 #|#
(b) Reduce the augmented matrix into the form g z : : .
00 #|#
(c) Hence find the value of p for which the system has a unique set of solutions.
1 -1 2 3 2
. . .10 1 2 -1 3
8. The augmented matrix for a system of equations is o 0 a : 5
0 0 0 (k-D(k+2) |k?+3k+2

Find the value of & if the system:
(a) has no solutions (b) more than one solution (c) a unique set of solution.
Find the solutions in (b) and (c).

1 -1 0\fa b ¢
9. The augmented matrix for |0 2 -l||d e f|=
1 0 1

g h i

Use row operations to reduce the augmented matrix to {

i -1 oY}

Hence, find [0 2 -1
1 0 1
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11 Differentiation

11.1 Review of Rules of Differentiation

¢ In this section we will review the rules of differentiation as covered in
Mathematics Methods Units 1 & 2 and Mathematics Methods Units 3 & 4.

o The table below lists the derivatives for several commonly used functions.

Function Derivative
n n-1
X nx
e/ Fi(x) el
f'(x)
In f(x) —
S (x)
sin x CoS X
cos x —sinx
2
tan x sec x
2
cotx —Cosec X

e The table below lists the rules for differentiation.

For u = u(x), v=v(x) and constants a and b:
Linear Rule
i[au+bv] = aﬁ'—u— + bﬂ
dx dx dx
For u = u(x):
The Chain Rule
d d du
—_— = —_ x —_—
dxf(u) duf(u) T
For u = u(x) and v = v(x):
The Product Rule d &y du
— (uv) =u—+v—
dx dx  dx
For u = u(x) and v = v(x):
The Quotient Rule v@ —u &
iH __dx d
dx| v v
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Example 11.1

Without the use of a calculator, find % for each of the following:

@ y=y1+e¥*  (®) y=(-20sin m () y= M (d) y= 1095

I+x
Solution:
1
(@ y=+ 1+e2* = (1+e7%)2
da 1 -
Using the Chain Rule D - 2 x (1+e*) 2 x 22
dx 2
_ er
1+e**

3.2
(b) y=(1 —2x) sin nx
Using the Product and Chain Rules:

dy 2 .2 3 .
£=3.(1—2x) (-2)xsin x + (1 —2x) X 2sin mx cos X X T

2
=-6(1 —2x)2 sin mx + w(l - 2x)3 sin 27x

tan (1 - 2x)
2

(©

I+x
Using the quotient rule:

d _ (+xP)x(-2sec*(1-2x)) — (2x)tan(1-2x)
dx (1+x%)?

_ =2(+x%)sec’(1-2x) — 2xtan(1-2x)

1-x*)?
(d) y=10°05%
COS X

Rewrite as: y= Mo

— ecosxlnlO
Hence: D _ 110 sin x £205¥ 10

dx
=—In 10 sinx 10°%*,
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Example 11.2
Without the use of a CAS calculator, find % if:

2
@ y=In(l—e*) (b)y=lﬁ-£l—4%) © y=in(Gsing) (d) y=In [SF2

1-x —X)
Solution:

(@) y=ln(1—e_x)4 = y=4in(l-¢e)

—X

Hence: Q = 4e

dx  1-e*
In (1+ x*
1-x
Using the quotient rule:
(1—x2)( 2x2j ~ (2% (1+x?)

d_ _ 1+x
dx 1-x*?

_ 2x(1-x%) + 2x(l+xD)in (1+x7)
(1+x2)1-x%)?
_ 2x[1-x% + 1+ xD)in (1+x7)]
(1+x2)(1-x%)?

(¢) y=In(xsinx) = y=lnx+Insinx
Hence: @ _1 + c?sx
dx x sinx
=l+cotx
x
(1+x) 1 1
d) y=lh |—— = y=—In(l+x) - =In(1—
(d y (- y=Sn(l+x) -~ ln(l—-x)
@ _ 1 -
dx  2(1+x) 2(1-x)
_ 1
(1+x)(1-x)
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Example 11.3
2

2 d
Given that y = cos x, prove that —; +4y=2.
dx
Solution:
2
y=c0s X

. . . Trigonometric Identities
Differentiate with respect to x: 8

dy . .2 2
— =2co0sx X (—sinx) e sin x+cos x=1

. 2 2
= -2 sin(x) cos(x) e secx=1+tan x

=—sin 2x 2 2
‘ _ . e cosec x=1+cot x
Differentiate again:

dzy e sin2x=2sinXx cosx
— =-2c0s 2x
) 2 L2
® COS2x=c0OS x—sIn x
Left Hand Side of Expression: 2
d2 ) =2cosx—1
—;j +4y=-2cos2x+4cos x

2
=1-2sinx

2 2
=-2(2cos x—1)+4cos x=2

2
Hence, ﬁ_zy +4y=2.
dx
Exercise 11.1 To be completed without the use of a calculator.

1. Differentiate each of the following expressions with respect to x:

@ (1-vx) (b) y1-2¢
d J1+in(1+x) () e tan*
(8) In (1 +cos m) (h) D’
(i) cot (1++/x) (k) sec e!**

(c) (sinx+cos 2x)2
® sin2 (1 + mx)
1) In(1- x2)4

(l) 21+x2

2. Differentiate each of the following expressions with respect to x:

2 : cotx 2 2
(a) x sin ox (b) Jx e (¢) (1 +2x) tan ox
(d) RC S (coszx) (e) e ¥ sin mox (f) cos2x sin’ x
(8) In(xtanx) (h) e_x2 In (xe**) (i) x2 In1+e”
2 —2x
G) In (x—J &) ¥ In [-ZLJ A x In ( xe J
1+x 1-x 1+ x)2
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3. Differentiate each of the following expressions with respect to x:

@ 1+ x? ) Jx . sin 2x
1-2x 1++/x 1+ cos 2x
2x —2cosx

@ e © e ' ® In1+2x
1+e72* 1-2&5M% 1+2x

2 sin x x

X e . e
(8) PR CN (h) —— (1) tan "
In(l+e”") l+e l+e
() () o BT

(J) e x-1 (k) e 1+sinx (1+x2)

4. Find the first and second derivatives with respect to x for each of the following.

() (1 +x )3 (b) 4/1-€* (©) cos 2x

. 2
(d) in(1+x) (e) e ¥ (f) tan x
: 2 . a’2y
5. Giventhaty=(x +4x+ 1)sinx, find —
dx
. .2 d2y
6. Given that y =sin x, prove that — + 4y =2.
dx
3 2 2
7. Given that y = In sin 2x, prove that 3 ay + (@j +36=0.
dx?  \dx
— 1 —_— 3 1 —_—
8. Given thaty= 1-sinx , prove that: (a) P —1 (b) d g: — Smx 22 .
cosx dx l+sinx dx (1+sinx)

11.2 Differentiating Parametric Functions

e Two variables x and y are said to be described parametrically if the rule is
described in terms of a third variable, called the parameter.

o For example, the rule y = x2 + 1 can be described parametrically as:
x=1 and y=t2+ 1.
e In general, a parametric relationship between x and y is described in the form:
x=f(?) and y=g().
dy
dy (—t]

—_— —d
dx @j '
dt

e To find 522, we first determine P and & and use
dx dt dt
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Example 11.4

. ody . 3 2
Find — interms of x for: (a) x=1+¢, y=3¢ -1

(b) x=sint, y=cost

Solution:
3 2
(a x=1+¢t = @=3t and y=3t -1 = iy—=6t
dt dt
Hence: iy_ = o
dx 342
¢ !
(x-1)°
(b) x=sint = £=cost and y=cost = @=—sint
dt dt
Hence: EJZ = —ilgt—.
dx cost

2 2
Butcos t+sinrt=1 = cost=d:\/1—sin2t

dy sint

X
Hence: = =4 =+
dx J1-sin®z J1—x2

Exercise 11.2

1. Find % . Answers should be expressed in terms of x where possible.

2
(@) x=1+7 y=3f -1

2
(c) x=t¢ y=t+-

t

2. Find % Leave answers in terms of ¢.

y=2t+%

Y (P N Y U
(c) x= 2(t+t) y 2(1 J

3. Find % . Leave answers in terms of x.

B
(a) x=t p

y=2sint
3
y=sin ¢

(a) x=2cost
3

(¢c) x=cos t

®)x=-, y=t

o~ | —

d) x=~  y=2
t2

3 2
(b) x=2f +t y=3f —t

(b) x=2-2cos2t y=4-2sin2t

(d) x=sint y =cos 2t
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11.3 Implicit Differentiation

¢ Consider the expression x2 +xy — y2 =4,
In this expression, the variables x and y are related implicitly.
The relationship between x and y is not obvious as we are not able to, without much
difficulty, express y in terms of x (or x in terms of y).

e To find the derivative of f(y) with respect to x, we use the chain rule as follows:

d _d dy
/) dyf(y)xdx
. For example:

d . d . dy
—sin(y) = — X —=
z ) y sin(y) z

dy
= CO0S§ —_
o) —

Example 11.5

. oay ) 2 2 2 2
Find - for the following: (a) x +xy—y =4 (b)) x & +xy=0.
Solution:

2 2
(@ x txy—-y =4
Differentiate both sides of the expression with respect to x:

dy dy _
2x+[y +x_czc"] - ZyE =0 IMEDIFFCar 2 +arky—3 2=d, ars 1) “:m
b (2 xty)
YTy
Hence b __-(2x+y)‘
dx (x=2y)

2 2
(b) x e +xy=0
Differentiate both sides of the expression with respect to x:

2 ydy 2dy
2xe? +x @ Z]+[2xy+x L7=0
[ e dx] [2xy dx]

& _ 2y+e)
de x(e +1)

Hence:
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Example 11.6
2
2
Given that x y — sin(x) = 0, prove that x° Q—+ 4xﬂ+ (x2 +2)y=0 .
i dx
Solution:
2
x y—sin(x)=0
. T 2dy
Differentiate implicitly: 2xy +x e cos(x)=0

2
2
Differentiate implicitly again: [2y + ZxQ] + [Zxd—y +x Q] +sin(x) =0
dx dx dic2

2

2

Reorganise: X a4y +4xd— +2y+sinx=0

dx? dx

x 2d’ ) +4xﬂ +2y+xy 0
&
2

xd +4xd—+(x +2)y=0
d?  dx

Note:

o In this example, there is no need to find dy/dx explicitly. By differentiating implicitly twice and with
some reorganisation, the required proof was obtained.

Example 11.7

For |x| < 1, differentiate x = sin y implicitly with respect to x.

- 1
Hence, prove that %sin Ix =

I-x
Solution:
x=siny = y= sin!x.
Differentiate x = sin y implicitly with respect to x:

dy
1=cosyx —
7
a1
dx cosy y

>+
2 o2 5 2
Butcos y+siny=1 = cosy== \/T—sm y==% \/E—x .

Hence: isin”1 x = 1 . : ]
dx

[Reject —+f 1-x? , as the graph of y = sin"'x hasa positive gradient throughout.]
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Example 11.8

Given that x = x(¢) and y = y(¢) and z = z(¥), determine % for each of the following:

x2

2
(a)A=l+siny (b) A=4nxy (c) 4= 3
X 1+y

Solution:
@) A= +siny
X

Differentiate implicitly with respect to #:
dA 1 dx dy

2
(b) A=4nxy
Differentiate implicitly with respect to #:

a4 =4n 2xé)xy + xzxd—y .
dt dt dt

=4r {ny% + x2 dy}.

dr
2
(0 4=——
I+y
Differentiate implicitly with respect to #:

2 & 2 ., dy

I+y°)x2x— — x“x2y—=

g _ Iy, Yl

dt 1+y%
2x(1+y2)% - 2x2y b

gt‘-
(1+y%)?

Note:

o This example introduces the use of implicit differentiation for functions defined in terms of several
variables which are in turn defined in terms of a common parameter.

o The function A is defined in terms of x and y. x andy in turn are defined in terms of the parameter t.
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Exercise 11.3 To be completed without the use of a calculator.
1. Determine % for each of the following:

2 2 2 2 2 2
(@) x +3xy+y =0 b)) x —xy-y =3 ) xy+tyx=x
2 2 x ¥y 2
d) x +xy +y =5 (e) ye txe =y 0 x In@)+xy=4x

2. Determine % for each of the following:

2 . . cos y
(a) x cosy+ysinx=-2 (b) sinycosx+xe =5

(c) 4xtany+ cosxy=3x (d) cos (ey) +In(siny)+xy=17

2
x Yy y +2y-1

3. Given that x = x(¢) and y = y(¢) and z = z(¢), determine %j— for each of the following:

2 2 .
(@) A=x +y (b) A=sinx+cosy () A= e 2% + 00

2
(d) A=xy () A= e *sinmy () 4=xin(l+tany)

2x

e (i) A= sin y

l+e” 1+cosx

(g)A=§ (h) 4=

4
7

2
2.2 2 -
4, if(1+x)y =l—x,showthat(ﬂj _ 12y
dx 1-x

2 2
5.Ifx +y =2 \/1+x2 =0, showthatibi=——x—2-.
(1+x7)

2 2
2 2
6. Ifx —y =1,provethaty£—y + (d_y) =1.
d?  \dx

5 2
7. Ify —2xy —2x =0, prove that (x—y)fjlx—;}——%{———%:O .

2
2

8. Ifye —2sin(x)=0, prove that -d—;)+4ﬂ

dx

: 2
cos(x) s%n (x) , prove that ay + ZyQ =0.
cos (x) +sin (x) &2 dx

9. Ify=

d2y
e

i 2
10. Ify= Smx , prove that x

2 l ('{ )y o

2
11. Ify=2e¢ **sin x, prove that qy +4—C—ZX +5y=0.
d?  dx
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12. For |x| < 1, differentiate x = cos y implicitly with respect to x.

d _ -1
Hence, prove that —cos Iy =

1-x2
13. Differentiate x = tan y implicitly with respect to x.

d, __ 1
Hence, prove that —tan Ix =

1+x2

11.4 Logarithmic Differentiation

e We can combine the use of the rules of logarithms and the technique of implicit
differentiation to differentiate complicated expressions. This composite technique
is often known as logarithmic differentiation.

Example 11.9
Find 2. for each of the following: (a) y = 2V* ®) y=.| L
dx x+1
Solution:
@ y=2"

Take logarithms of both sides:
Iny)=In (2\/; )
In() = x in(Q)

Differentiate implicitly:

ldy _ (2
ydr 2+x
& _ . hQ
x V00
2% n2)
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x-1
by y=, —
x+1
Take logarithms on both sides:
In@®)=In x-1
x+1

ln(y)=%[ln(x—1)—ln(x+l)]

Differentiate implicitly:

ldy _1[ 1 1

}E_E{x_—l x_ﬂ}
dy_l{ 2 }
dx 2| (x-D(x+1)

1
1 3

(x=D2(x+1)2

Exercise 11.4

1. Use the technique of logarithmic differentiation to differentiate
the following expressions with respect to x:

@2 ®) ¥ © 2
(d) xln ) (e) xsin (x) f) xcos (x)

x 1Y n(x
® (1+%) w (2] Q) tin "

2. Use the technique of logarithmic differentiation to differentiate
the following expressions with respect to x:

I+x 1+ x2 1+x—x2
e © © s
(1+x2)>2 (1-2x)3 2 ++/x)?
4 X2 2+Vx)”
(1-2%°) © (x+2)* ® Wx -1}

2x I1+x 1+x2
h .
N R W2
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12 Applications of Differentiation

12.1 The Gradient Function for Implicit Functions

e This section extends the concept of the gradient function introduced in Mathematics
Methods Units 1 & 2 and Mathematics Methods Units 3 & 4, to implicit functions.

o Recall that for the curve y = f(x), the gradient function is % = f'(x).

= f(a).

xX=a

o The gradient of the curve at (a, f(a)) is %

e The gradient function of an implicitly defined curve f(x, y) =0,
. dy
is given by — = g(x, y).
g y =8y

o The gradient of the curve at (a, b) is given by P =g (a,b).

x=a,y=b

Example 12.1

2 2
Find the equation of the tangent to the curve x +y — 8x— 6y + 17 =0 at the point with
coordinates (2, 1).

Solution:
2 2
x +ty —8&—-6y+17=0
Differentiating implicitly: 2x + Zyii—‘l}; - 8- 6Q =0

dx

Substitute x =2,y =1 4+2Q—8—6£§i=0
dx dx

- b
dx

Therefore, the gradient of tangent at (2, 1) is given by m = —1.

Hence, equation of tangent is y—(1)=-1[x-(2)]
y=-x+3

Notes:
» Notice that the gradient of the tangent can be obtained without determining the expression for dy/dx.
o Unless required, it is not necessary to obtain an explicit expression for dy/dx.
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Example 12.2

2
A curve has equation y +xy—2=0. Find the coordinates of the points on this curve where

the gradient of the curve is —% .

Solution:

2
y +xy—-2=0
Differentiating implicitly with respect to x:

2y (%) +y+x (%) =0

Y
dc  (x+2y)
When gradient=—l: > _1
3 (x+2y) 3
= y=x
2 2
Hence: x +x —=2=0
= x==+1

Whenx=1,y=1 and whenx=-1,y=-1.
Therefore, required points are (—1, —1) and (1, 1).

Exercise 12.1

1.

Find the equation of the tangent to each of the following curves at the indicated point:
3 3
(@) x +y +3xy—1=0 at the point where x =2
2

(b) x +xy +3xy—1=0at the point where x = 1
(¢) x cos (y) +y=7/3 at the point where x =0
(@) x In(2+y)+xy=1 at the point where y = —1.

X
A curve has equation y e + cos (x) =2. Find the equation of the tangent to this curve at
the point where x = 0.

. A curve has equation /1+y +xy=2. Find the equation of the tangent to this curve at

the point where y = 3.

2 2
. A curve has equation x +y +2y—4=0. Find the coordinates of the points on this

curve where the gradient of the curve is 2.

2 2
. A curve has equation x +y +xy—4=0. Find the coordinates of the points on this

curve where the curve is parallel to the line y = x.
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6.

10.

2 2
A curve has equation 2x +y +xy—2=0. Find the coordinates of the points on this
curve where the curve is parallel to the line y = 3x + 1.

2
. A curve has equation x +siny—1=0. Find the coordinates of the points on this curve

where the curve is parallel to the line y = —2x + 3.

2 2
. Find the equation of the tangent(s) to the curve xy +x y =2 that is:

(a) parallel to the x-axis (b) parallel to the y-axis.

3 2 2
Consider the curve with equation 2y — 3y —3x — 12x = 12. Find the equation of the

tangent to the curve that is parallel to the: (a) y-axis (b) x-axis.

. . . 2 . .
Consider the curve with equation x + 27 cos y +2ny = 0. Find the equation of the

tangent to the curve that is parallel to the: (a) y-axis (b) x-axis.

12.2 Related Rates

¢ Consider y = f(x) where x = g(?), to find the rate of change of y with respect to ¢

dy d dx
dt _dxf(x)xdt'

2

we differentiate y implicitly with respect to ¢

¢ Hence, the rate of change % is related to the rate of change ?
t

Example 12.3

0.05x dy . dx
Fory=10e , wherex=f(f), find o given that when x =0, =~ =1.2.

Solution:

0.05x
y=10e
Differentiate implicitly with respect to #
0.05
P _ 05e &
dt dt
When x =0, & _ 1.2.
dt
0.05(0
Hence, % =05e ( )(1.2)

=0.6
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Example 12.4

The volume of a spherical balloon is increasing at a rate of 1 cm per minute. Find the rate of

3
change of the radius of the balloon when the volume of the balloon is 4 cm .

Solution:
Volume V of sphere of radius 7: V= i7tr3'.
Clearly, V and r are each functions of time ¢.
2
Differentiate implicitly with respect to # —d—It/ =4nr %
When V = %TE, radius ¥ =1 cm.
Sinceili=1: =47cz
dt dt
Hence: a_1 cm per minute.
dt 4=
Example 12.5

A ladder 7m long rests against a vertical wall, and is standing
on flat ground. The bottom of the ladder is being pushed along
the ground and towards the wall at a steady rate of 0.1 ms™.
How fast is the top sliding up the wall when the bottom is 2 m

Wall
out from the wall? ladder
Yy
Solution:
. . . ground X
Let x and y be the horizontal and vertical distances of the bottom of
the ladder from the foot of the wall.
i 2 2
Using Pythagoras’ Theorem, x +ty =49.
Differentiate implicitly with respect to 7 (x and y are both functions of time 7):
dx d
2xZ 1292 20
dt dt

The rate at which x changes, % = —0.1 (constant).

Also, whenx=2,y= J4— = 3\/5.
Hence, when x = 2:
2(2)(=0.1)+2(35 )f{—f =0
dy 5

da 75
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Example 12.6

Elle who is 1.8 m tall walks beneath a street lamp that is 9 m above ground level. If Elle

-1
walks at a speed of 1 ms  towards the lamp, find the rate with which the length of Elle’s
shadow is changing when she is 4 m from the street lamp.
Solution:

Let the distance between Elle and the lamp be x cm.
Let the length of Elle’s shadow be y cm.

Using similar triangles: 9m
Yo Xty " |18m
1.8 9 - i
= x @-ﬁ X
Y=a
Differentiate implicitly with respect to time #:
& _1d
d 4 dt
dt dt 4
1 -1
=——ms
4

Example 12.7

AABC is an isosceles triangle with sides AB=AC =10 cm. ¢
ZBAC = 0 radians. ZBAC changes at a rate of 1 radian per
minute. Find the rate with which the length of side BC is

changing when Z/BAC = g radians. 10cm
Solution: B
10cm A
Let BC=xcm.
2 2 2
Using the cosine rule: x =10 +10 —2x10x 10X cos 6

2
=200 —200 cos 0
Differentiate implicitly with respect to time #:

2x & =200sin 6 a9
dt dt
dx _ 100sinej@
dt x dt
100sin =
iq=1andwhen6=£,x=10cm: @ _ |73
dt 3 dt 10

=53 cm per minute.
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Example 12.8

The light beam in a lighthouse 1 km offshore from a straight coastline is rotating at 2
revolutions per second. Find how fast the beam of light is moving along the shoreline when
the beam is at a point which is 1 km from the point directly opposite the lighthouse.

Solution:

Let K be the point on the shoreline directly opposite the !
lighthouse L. Hence, LK =1 km. shoreline
Let path of light beam be LB where B is the point where the light

beam meets the shoreline.

Let KB = x km and ZKLB = 0 radians.

In ALKB: tan 6 =x
Differentiate implicitly with respect to time ¢:
2 do _ dx

do : .
— =2 revolutions per second = 4 radians per second.
t

2
Whenx=1,sec@=\/§: = %=(\/§) X 47

= 8n km per second.

Exercise 12.2

1. Fory= /1+x , where x =f(f), find % given that when x = 3, % =04.

2. Fory=In (1 + 5x), where x = f (), find % given that when x = 0, %lix; =-0.5.

2 2
3. Forx +y =100 where x >0 and y > 0, and where x =f(¢) and y = g(?), find:
(a) P given that when x = 6, & _ 0.2 (b) & given that when y =5, b _ -0.3.
dt dt dt dt

4. For xy +sin (y) = 1/2, where x = f(f) and y = g(¢) such that 0 < y < g, find:

(a) 4 given that when x = 0, & 0.2 (b) & given that when y = 1/6, P 2.
dt dt dt dt

—1 2
5. The side of a square is increasing at the rate of 0.2 cms . When the areais 25 cm ,

find the rate at which (i) the area and (ii) the perimeter of the square is changing.
6. The diameter of the iris (assumed circular) of a mammal is dilating at a rate

-1
of 0.0l mm s . Find the rate at which the (i) circumference (ii) area of the dilated
opening is changing when the radius of the dilated opening is 0.5mm.

© O.T.Lee 169



Mathematics Specialist Units 3 & 4

7.

10.

11.

12.

13.

14.

15.

16.

Rain water is being channelled by downpipes into a cylindrical rain water tank at a rate

3
of 0.2 m per minute. If the rain water tank has a base radius of 5 m, find the rate at
which the depth of the water level is changing when its depth is 0.5 m.

-1
The radius of a spherical balloon is increasing at a constant rate of 1 cms . Find the rate
with which: (i) the volume and (ii) the surface area of the balloon is changing when the
radius is T cm.

The surface area of a spherical balloon undergoing inflation is increasing at a rate
2 -1
of 10cm s . Find the rate at which (i) the radius and (ii) the volume of the balloon is

changing when the surface area is 2 000 cm .

3
Wheat grains falls from a conveyor belt onto a conical pile at the rate of 2 m per minute.
The radius of the base of the pile is always equal to half the height of the cone. Find the
rate at which the height of the conical pile is changing when the height is 5 m.

3
Water is leaking from the base of an inverted cone at a rate to T cm per minute. The

base radius and height of the cone are 20 cm and 50 cm respectively. Find the rate with
which the height of the water level measured from the apex of the cone is changing when

the volume of water left in the cone is 51/6 cm .

An empty inverted right circular cone of semi-vertical angle 300 and height 100 cm is
filled with water. Water is siphoned into the cone from the open end at a steady rate of
3

5 cm per minute. Find the rate with which the water level is changing when the water
level is 50cm from the vertex of the cone.

A ladder 10 m long rests against a high tension electricity pole, and is standing on flat
ground. The bottom of the ladder is being pulled along the ground away from the foot of

-1
the pole at a steady rate of 0.1 ms . How fast is the top sliding along the pole when the
bottom is 3 m out from the foot of the pole?

A ladder 8 m long standing on flat ground, rests against a wall. The top of the ladder is

-1
sliding down the wall at a steady rate of 0.2 ms . How fast is the bottom of the ladder
sliding along the ground when the top is 2 m from the foot of the wall?

Jason who is 1.7 m tall walks beneath a light source that is 15 m above ground level.

-1
If Jason walks at a speed of 5 kmh  away from the base of the light source, find the rate
with which the length of Jason’s shadow is changing when he is 4 m from the base of the
light source.

Aimee who is 125 cm tall walks beneath a street lamp that is 10 m above ground level.
If Aimee walks at a speed of 20 m per minute towards the lamp, find the rate with which
the tip of Aimee’s shadow is changing when she is 2m from the base of the street lamp.
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17.

18.

19.

20.

21.

22.

23.

24.

25.

A balloon is released from ground level at a point 50 metres from an observer who is also

-1
at ground level. The balloon ascends vertically at a rate of 1 ms . Find the rate with
which the angle of elevation of the balloon from the observer is changing when the
balloon is at a height of 50 m.

A boy standing on a cliff is “tracking” a boat through a telescope as the boat approaches
the base of the cliff directly below him. The telescope is 100 m above the water level and
the boat is approaching a point on the base of the cliff directly below the telescope, in a
direction that is perpendicular to the coast line with a speed of 2 ms~'. Find the rate at
which the angle of depression of the telescope is changing when the boat is 200m from
the base of the cliff.

2 2
A toy train is moving anti-clockwise around a circular track with equationx +y =169.
At the point (12, 5), the x-coordinate of the train is decreasing at a rate of 1 cm per
second. Find the rate with which the y-coordinate of the train is changing at this instant.

2 2
A toy train is moving clockwise around a circular track with equation x +y =100 at
the rate of one revolution every minute. Determine how fast the x-coordinate of the train
is changing at the instant the train passes through the point (6, 8). Measurements are
in cm.

The light in a lighthouse 2.5 km offshore from a straight coastline is rotating at
3 revolutions per minute. Find how fast the beam is moving along the shoreline when the
beam is at a point which is 1 km from the point directly opposite the lighthouse.

Object A is located at P 20 m East of Object B. Object A starts moving Northwards at a

rate of 10 ms_ while object B starts moving Westwards at 5 ms . Find the rate of
separation between the objects A and B after 30 seconds.

Particle A is located 500 m North of O and particle B is located 800 m West of O. A

starts moving Southwards at a rate of 5 ms~ while B starts moving Eastwards at 10 ms .
Find the rate of approach between A and B after 10 seconds.

The Dockers Bridge passes over the West Coast Freeway. The freeway is 20 m below
the bridge and at right angles to it. A car travelling at 12 ms~' on the bridge is directly
above another car travelling at 24 ms™' on the freeway. Find how fast the cars will be
separating 1 minute later.

The hands of a analogue clock” are 18 cm (minute hand) and 12 cm (hour hand) long
respectively. Determine the rate at which the distance between the tips of the hands is
changing at 9 o’clock.
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13 Anti-Differentiation

o In this chapter we will review and extend the rules of anti-differentiation as
introduced in Mathematics Methods Units 3 & 4.

13.1 Anti-Differentiation as the reverse of Differentiation

e Recall that if % F(x) = f(x), then j Fl(x)de= f(x)+C.

Example 13.1
Given that %[x sin(2x) + @%Z—X—)} = 2x cos(2x) , ﬁndjxcos(2x) dx .

Solution:

cos(2x)
2

Clearly, since %[x sin(2x) + } = 2x cos(2x)

cos(2x)

J.Zx cos(2x) dx = xsin(2x)+ +k

2[ xcos(2x) dx = xsin(2x)+3°s§ﬂ +k

[xcos(2x) dx = %[x sin(2x) + °°S§2x)} +C

Exercise 13.1

1. Given that %[x sin(x) +cos(x)] =x cos(x), find Ixcos(x) dx .
. dr x,. X X

2. Given that E[e (sm(x)+cos(x))} =2e cos(x), find Ie cos(x) dx .
: d

3. Given that E[xzn (x)—x] = In (x), find j 2In(x) dx.

4. Given that %[xex —ex} =x ex, find J.xex +x dx.
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2 2
. Differentiate ¢* with respect to x. Hence, find J- xe* dx.

6. Differentiate ecos(X) with respect to x. Hence, find Jsin(x) e°05%) g,
7. Differentiate ¢ [sin(x) + cos(x)] with respect to x. Hence, find j[e_x sin(x)] dx.
2 —
8. Differentiate (x +2x+2)e " with respect to x. Hence, determine j[xze_x 1dx.
9. Differentiate e_x[l + x] with respect to x. Hence, determine J-[x(e‘x -D] dx.
2
10. Differentiate x [2 In (x) — 1] with respect to x. Hence, determine I {x[x+In(x)]} dx.
2 x
11. Given that f(x) = g'(x), & (x) = k'(x), where g(x) = (\/; +1) and k(x)=e , find:
@ [f@a ) [and  © [fG)+h(x)dr (d) [x+ f(x) dx.
13.2 Anti-differentiation I
¢ The table below lists the anti-derivatives for several commonly used functions.
Function Anti-derivative
" n+l
x wheren #—1 +C
n+l
n (ax+b)"H!
— - +C
(ax +b) wheren#-1 a(n+1)
mx
™ £ _+c
m
fix)el® /™ 4
¢ The generic rules for anti-derivatives are listed below:
o« [afx)+bg(x)dx=a j F(x) dx +b j g(x) dx for constants a and b.
n+l
o« [ LT dx = VO ¢ wheren#—1.
n+1
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Example 13.2

Without the use of a calculator, anti-differentiate each of the following with respect to x:

2
x“+3x 1
a) —— b
(a 3 (b) =
Solution:
2
xX“+3x , ¢ 2 -3
(a) | = dx—jx +3x72 dx
X 2x?
1 1
b de = [(1-2x) 2 dx
(b == &= Ja-29)
1
—725)2
(e
= —Jl-2x +C
(©) j(x2+1)2dx=jx4+2x2+1dx
5 3
X L2 ke
5 3
Example 13.3

© @ +1)

Without the use of a calculator, anti-differentiate each of the following with respect to x:

(a)

) 3x
x4/ 1+x (b) ;

1—-x

Solution:

(2) jx,/1+x2 dx = J.x(1+x2)% dx
1
=%I2x(l+x2)§ dx

3
1| 1+x%)2
21 3

2

+C

3
1+x5)2 +C

W | =

[r e a

O, -
n+l
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1

3x _ 3 N
(b) J‘\/? dx = _2‘[ 2X(1 X ) dx If,(x)[f(x)]n dx
! _ et |
_ 3| a-x)2 e n+l
2 1
2
1
=3(1-x5)2+C
Example 13.4
Without the use of a CAS calculator, integrate each of the following with respect to x:
1-¢&* x
a b
@ — ® —2
Solution:
1-e* _
(a) dx = |e *-1dx
P e |
-1 x+C
ex
(c) j ad = LJA—4xe_2x2 dx +C (%)
242 4 [fx)e’ ™ ax
:_le*2x2+c :ef(x)+c
Exercise 13.2 To be completed without the use of a calculator.
1. Anti-differentiate each of the following with respect to x.
2 3 1 2
(@ —= b)) —= (c) (d)
Jx 4x @t +1)° 1-4x
3 x+2)2 32 2 3
(@ (x+1) @ &2 (8 (& +1) ) ¢ - 1)
x
2. Integrate each of the following with respect to x.
(a) 4x (1 +x) ®) 3xy1-2x% () —3"31 ) -
(1-x7) 1+x3
3
2 3 2-2x 1 1 1
@ G+DE +20 O ——= (@ —2(1——) (h) —=(1+%)"
(2x-x%) X X Jx
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3. Integrate each of the following with respect to the appropriate variable.

260 05x 1 ) 2
(a) (©) Ve (d)
) eO.lx ( er)3
) & e 2\ (1+2e )2
(€) (2" +1) ® < (8) (ex +—xj 0 ———
e e e?
4. Integrate each of the following with respect to the appropriate variable.
xezx2 Ly
(a) (b) () xe™* (d
zex e4—x
2 X
@) (x+1)e* *2* (@) &Fa+e) (@ ¥y -1 () ——

(1+2¢*)°

13.3 Anti-derivative of ——2 f(x)
Sf(x)

e Since —lnf()—/;((x)) = I%dx=ln|f(x)|+c.

e In particular: Jl dx =In|x| +C.
x

Example 13.5

Without the use of a CAS calculator, integrate each of the following with respect to x:

1- 3x 3x
(a) b) —
1-x
Solution:
1-3x )c—2 3
(@) [ &=[=—=
2x 2 2x
-1 3plkl+c
2x 2
3x 3 —2x
(b) I 5 d = — 2
1-x -2 1-x

—_3nli-<|+c
2
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Example 13.6
Without the use of a CAS calculator, integrate each of the following with respect to x:
4¢>* 4
O P R
Solution:
@ | e’ _ 4j 62

1432 67 14+3e2*

= 2ln\ 14 3e2*
3

5,
®) I\/—(1\/—) "I(l\/—)
=8ml1-+x|+cC

+C

Exercise 13.3 To be completed without the use of a calculator.

1. Integrate each of the following with respect to x.

2 4 (x-2)° (1+2x)°
® 1+3x ®) 2—5x © 4x @ 3x2
2 3 2.2
© (1—1) ® (1+1j ® — ) —F
X X 1-3x 2x” -1
2. Find the anti-derivative of:
2
(@) : (b) 9+6x © X +2x;r1
x° —8x x> +3x (1+x)
5 e-—2x 3x exz e2x _ e—2x
d — L
@ e © 1+265 e
3 3 1
- h) — i
®© 0275 B T O 5
X
3. Find:
@ [1d6?) ® [*ded) @ [Fdah) @ [1+drd@n)
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13.4 Standard Trigonometric Integrals

* The following table gives the anti-derivatives of some trigonometric functions
involving linear factors (without the constants of integration).

Function Anti-derivative
- +b
sin (ax + b) —cos(ax+b)
a
i +b
cos (ax + b) M_)
a
2 tan (ax +b)
sec (ax + b) .
2 —cot(ax+b)
cosec (ax + b) 4

* In many instances, the use of certain trigonometric identities is required.
Listed below are some of the commonly required trigonometric identities.

o2 2
e sSin A+cos A=1

2 2 2 2
e | +tan A=sec A e ]+ cot A=cosec A
e sin2A =2sin A cos A

2 2
e cos2A =cos A—sin A
2
=2cos A—1
2
=1-2sin A

Example 13.7

Without the use of a calculator, determine: (a) I sin ( % —2x)dx (b) Isecz (1—-mx) dx.

Solution:
(2) Isin(E—Zx)dx =M+C
4 )
= %cos(g—Zx) +C
(b) [sec?(1—m) e = 220=™) 4

—T

=—ltan(1—7cx)+C
yis
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Example 13.8
Without the use of a calculator, determine: (a) jcos (x)4/1—sin(x) dx (b) J-sin 2xcosx dx.

Solution:
1
(a) jcos(x) 1-sin(x) dx = —f—cosx(l—sinx)2 dx
3
__(osinn? o [F L@ dx
5 n+l
> e,
2 . n+l
= —E(l—smx)2 +C
(c) Isin 2xcosx dx = j(2sinx cos x) cos x dx sin 2A =2 sin A cos A
= —2_‘.—sin x (cos x)2 dx
3 [reLrer d
_ —2(cosx)
=7 +C [f(x)]n+1
3 == C
=~gcos3x + C. Y
3
Example 13.9
Without the use of a calculator, determine:
3cos2x
a) |t +1) dx
@) Ian(ﬂ:x ) ®) I1+sm2x
Solution:
sin (nmx +1)
(2) jtan(nx+1)dx =j——
cos(mx+1)
J-—nsm(nx+1) J‘f (x)
-nY cos(mx+1) (x)
= lnl X | +C.
=L lcos e+ 1) +C /@
T
3cos2x 2cos2x
b DAY e = 2
®) jl+sin2x -[1+sm2x

=Eln|1+sin2x| +C
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Example 13.10

Without the use of a calculator, determine:

() [1+tan® mxdx  (b) [+tan® x)tan’ x dx  (0) [ (1+cot® 2x)cot® 2x dix

Solution:

(a) I1+tan2 x dx = jsecz(nx) dx

=ltan(nx)+C
i

(®) [ (+tan”x) tan’ x dx = | sec? x (tanx)’ dx

1
= tan4x +C

4

2 2
1+tan A=sec A

[ /&L dx

_ Lot
n+l

(c) I 1+ cot? 2x) cot? 2x dx = LZ I —2cosec? 2x (cot 2x)2 dx

3
_ o (cot2x)
-2

= —lcot3 2x +C
6

Exercise 13.4

+C

To be completed without the use of a calculator.

1. Integrate each of the following with respect to the appropriate variable:

(a) cos (2x) (b) 2sin (1 -24)

(d) tan (nx) (e) 2 cosec2 (%j
2
@) — 2\/5 (h) 5+ co; (mx+1)
sin” (1 + mtt) 3cos” (mx+1)

2. Integrate each of zhe following with respect to x:
(a) 5 sin (2x) cos (2x)

2 3
(d) cosec (x) cot (x) (e) cosx (1 +sinx)

SBC2 X

hY ——
®) N 1+tanx

3. Integrate each of the following with respect to x:

2 3
(g) cosec x (1 + cotx)

@) cos. (2mx) b sin(2x+1)
1-sin(27mx) 1+cos(2x+1)

(d) sec? (x) ©) 3cosec? (2x)
1+2tan(x) 14+ 2cot(2x)

(b) cos (1 —x) sin3(31 —X)

() sec2 (1+2x)
3cot3x
® 5
2 +sin? (mx)
3sin? (mx)

(c) 3 secz(x) tan (x)

(f) sin2x /1—-2cos2x

cosec2 2x
(1+cot 2x)4

cos (2x) +sin(2x)
cos (2x) —sin (2x)

cos (x) S (*)

1 _ 2esin (x)

(c)

®
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4. Anti-differentiate each of the following with respect to x:

2 2
(a) sin (2x) cos (2x) (b) cos (2x) sin (4x) (c) cos x —sin x
2 .2 7
(d) 1-2sin 2x o) —S08(2%) () SIox+oos”x
sin (x)cos (x) 2cos x

5. Anti-differentiate each of the following with respect to x:
4

2 2
(a) 1+tan 2x (b) (1 +tan 2x)tan 2x (c) (1+ tan> x)4/ 1+tanx
d 1+tan® x . 1+ tan® 2x @ 1+ tan® x
(1+2tanx)’ Jm+tan2x 3—2tanx
6. Anti-differentiate each of the following with respect to x:
2 2 4 9
(a) 1+cot 2x (b) (1 + cot mx) cot mx (¢) (1+cot” x)vl+cotx
(d) 1+cot? x ©) 1+cot? x ) 1+cot? x
(l—cotx)4 v4+3cotx 2+cotx

7. Determine the integral of each of the following, with respect to x:
(a) sin (3x) cos (2x) —cos (3x) sin (2x)  (b) cos (4x) cos (x) + sin (4x) sin (x)

(<) sin (6) cos () + cos (W/6) sin (1x) (d) 1tiri$)(;)t?;(<22?)

8. Determine:

(a) j 1 d(cosx) (b) j sin x d(sinx) (© [tan(v/x) d(/x)

13.5 Integration of Trigonometric Functions in General

e In integrating trigonometric functions, quite frequently, the use of trigonometric
identities is required.

13.5.1 Even powers of sin (ax + b) and cos (ax + b)

¢ The double angle cosine formula is used to successively reduce the even power
of the sine/cosine function to a unit powered term involving a multiple angle.
The unit powered multiple angled term can then be integrated without difficulty.

2 1+cos2A

e COs A=
2
2 _
. sinA:l_C_‘;Sﬁ
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Example 13.11
2 4
Find the anti-derivative with respect to x for: (a) sin (2x) (b) cos (x).
Solution:
2 -
@ sin’(2x) = 1—cos(4x)
2
Hence j sin?(2x) dx = % [1-cos (4x) dx
l[x— sin (4x)} ‘e
2 4
4 2 2
(b) cos (x) = [cos (x)]
2
_ [1+cos(2x)} I
2
= % [1+2cos(2x)+ cos? (2x)]
_1 1+2cos(2x)+lM:| it
4| 2
1]3 1
= —| —+2cos(2x)+—cos(4
712 (2x) 5 ( x)}
4 1[3x . 1.
Hence: j cos (x) dx = —| —+sin(2x)+—=sin(4x) | + C
412 8
Notes:

o Note that the double angle formula was used twice, once in statement [1]

and again in statement [2] to successively bring the power of the cosine term from 4 down to 1.
o Clearly the method becomes inefficient when the power is large.

In such instances a reduction formula is used. This, however, is outside the scope of this book.
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13.5.2 Odd powers of sin (ax + b) and cos (ax + b)

e For integrals involving odd powers of sin (ax + b) or cos (ax + b):
o the odd powered integrand is separated into an even powered term

and a term of power one
o the term with the even power is rewritten in terms of the complementary

2 2
trigonometric function using the identity sin A +cos A =1
« the resulting expression is then integrated using the formula

n+1
[reorrera =L ¢
n+1

¢ Alternatively, a substitution method may be used.
This will be discussed in the Section 13.5.

Example 13.12 See Example 13.15

5
Find the anti-derivative of cos 3x, with respect to x.

Solution:
Rewrite coss3x = cos 3x cos43x
= cos 3x (cos23x)2
=cos3x(1 - sin23x)2
=cos3x(1-2 sin23x + sin43x)
=cos 3x — 2 cos 3x sin23x + cos 3x sin43x
Hence:

J.cos5 3x dx = jcos 3x—2cos3xsinZ3x+ cos3x sin4 3x dx

= sm33x -2x %Pcos 3x (sin 3x)2 dx + %I3COS 3x (sin 3x)4 dx

. - 3 : 5
sin3x 2 % 1] (sin3x) N 1| (sin3x) L C
3 3 3 3 5

i3 5 g
sin3x—2sm 3x+sm 3x +C [[ccoscan>>Sax

1

u]
3 3 5 3-5in(15- x)+25- sin( 9+ x )+150= 5in( 3+ x)
728

Note:
o For trigonometric integrals, depending on the technique used, several equivalent answers are possible.

o The accompanying screen-dump from a CAS calculator gives the solution in terms of sines of multiple
angles, instead of powers of sines.
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13.5.3 Integrals of sin (ax + b) cos (ax + b)

e If n and m are both even, then the double angle formula is used to reduce both
powers to unitary.

e Ifat least one of # and m is odd, use the method described for odd powers
to “split” the odd powered term.

Example 13.13

2 2
Integrate each of the following with respect to x: (a) sin x cos x (b) sin x cos x .

Solution
. . sin2x
(a) Identity: sin x cos x =
.2 2 (sin2x 2
Hence, sin x cos x =
2
1.
= —sin? 2x
4
_ 1({1-cos4x
4 2
_1
= —(1-cos4x)
8
Therefore:
") 2 1 = —
sin“(x)cos”(x) dx = = |1—-cos4x dx
8 J\(sin(z))2(cos(x))2dz
1 sin 4x . 4= x-sin(4:x)
SR oo
) 2 3 2 2
(b) Rewrite: SIn X COS X = SIn X COS X COS X
2 2
=sin x (1 — sin x) cos x
2 4
= COSs X Sin X — COS x sin x
Hence:
. 2 3 _ - 2 - 4
sin“(x)cos”(x) dx = | cosxsin“ x—cosxsin” x dx
-3 -5 Mo
sin” x  sin” x
= — +C fcsinu))?(cos(z))%z
3 5 i
—(=inCx))3 %(sin(x))s
5 3
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Exercise 13.5 To be completed without the use of a calculator.

1. Integrate the following with respect to the appropriate variable:

(a) sin 2(4x) (b) sm3(1r.x) (©) cos (1 —2¢)
(d) cos (2mx) (e) sin 3(27tt) (f) cos (n:x/2)
(g2) sinS(nt) (h) cos (1 —mx) (1) sins(l — 1x/2)

2. Integrate the following with respect to the appropriate variable:

(a) sin(mr) cos(nr) (b) sm (Tcx/2) cos(mx/2) (©) sm(3nx) cos (3TDC)
(d) 2 sins(nx) cos(mx) (e) sin (3x/2) cosz(x/2) (f) sin (nt) oS (nt)
(g) sin3(2x) cos2(2x) (h) [sin (x)]/cosz(x) (1) [cos (x)]/sm (x)

13.6 Integration using the Method of Substitution/Change of variable

What follows is a formal development of the method of substitution.

Letyzjf(x)dx. [1]

Since differentiation is the reverse of anti-differentiation: d_y =f(x).
x

e Assume x = g(u).
That is, assume that x can be written in terms of another variable u.
Hence, y can be expressed in terms of the variable u.

e Using the chain rule, & _ dy &
du dx a’u
dy
Hence, — = —_.
du f(x)x du
Anti-differentiate with respect to u: y= I f(x) ;ﬂ du [2]
u
: dx
e Compare [1] with [2]: j f(x)de = | f)-—= du 3]
u

o Asx = g(u), we can write f(x) = h(u).
Hence, [3] becomes: [fGx)ax = [ At & [4]
du
e What we have done in [4] is to convert an integral with x as the variable to an

integral with u as the variable. This procedure is known as integration with a
change of variable or integration using a substitution.
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e We shall now discuss a more “mechanical” approach to the method.

e Consider the expression  f(g(x)) x g'(x).

du
Letu= = — =g'(x).
o Letu=g(x) Z g'(x)

From first principles: g'(x) = lim [g (x+3x)~g (x)}
dx—0 Sx
H
= lim | —
3x—0| dx
b
Ox

This can be expressed as du= g'(x) xdx.

du and dx are referred to as differentials.

e That s, if% =g'(x) = du= g'(x) xdx.

¢ Anti-differentiate f (g(x)) x g'(x) with respect to x:
[ F(a(x)xg'(x) dx.
In the integral:

» replace f(g(x)) with f(u)
o replace g'(x) x dx with du.

Hence: J- flg(x)xg'(x) dx = .[ f(u) du where u = g(x).

¢ In this approach, we have “violated” the idea that % is a symbol by itself,

and I f(g(x))xg'(x) dx is another symbol by itself.

However, in this instance, it is formally acceptable by the mathematical
community.
» The symbols, dy, dx, du etc. are considered as differentials

and hence can be manipulated as algebraic terms.
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Example 13.14

Integrate the following with respect to x using the suggested substitution:

(a) (x_—_l) u=x+1 (b) x\/1—x2 u=(1-x%

x+1
Solution:
du
@ u=x-1 > —=1 = dr=du.
dx
Also [x-4)2: [u_2]2
’ x+1 u

x—1 2 u-2 2
Hence: J‘(TJ dx = _[ ( j du
X u
= jl—i+4u‘2 du
u
=u—4ln|u|—i +C
u

4
= (x+1)—m—4ln|(x+l)| +C

4
=x- —4ln|(x+1)| +K
(x+1)
2 1
b)) u=1-x = du=-2xdx = dx=-—du
2x
I
Also x4 1— x2 = xy? It is not necessary to convert
. the integrand completely to an
[ 2 _ > 1 expression in u. With
Hence ,[ Xy 1=x" dx = _[x u? x _2_du “foresight” the remaining “x”
X ; .. .
. term will be eliminated in the
1¢ = steps that follow.
=—— J- u? du ps that
2
3
2
__ .
3
5 3
— 2
-2 .
3

e The algorithm then becomes:
1. Find the differential equivalent to dx.
2. Convert f(x) into an expression % () involving the new variable .
This does not have to be a complete conversion. .
Integrate A (1) with respect to the new differential.
4. Express the final answer in terms of x.

(98]
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Example 13.15 See Example 13.12

5
Use the substitution # = sin 3x to find the anti-derivative of cos 3x, with respect to x.

Solution:

1
3cos3x

u=sin3x = du=3cos3xdx = dx= du

Also, cos53x =cos 3x cos43x
=cos 3x (cosz3x)2
=cos3x (1 - sinz3x)2
=cos3x(1-2 sin23x + sin43x)
=cos 3x (1 - 2u2 + u4)

Hence:

J'cos5 3xdx = jcos3x (1—2u2 +u4)x du

3cos3x

=1J.1—2u2 +ut du
3

3 5
:l u_2i+u_ +C
3 5

-3 )
=l sin3x—2sm 3x+s1n 3x L C
3 3 5

Exercise 13.6 To be completed without the use of a calculator.
1. Integrate each of the following with respect to x using the suggested substitution:
6
(a) (1+2x) u=1+2x (b) 1-2x u=1-2x
2 3 312
() dx X2 +1 wu=x +1 @ \ x(1+x2) u=1+x
2 2 3
© —2X _  y=9_4y ) —2= u=x —8
9—4x? X -8

2. Integrate each of the following with respect to x using the suggested substitution:

(@) 4+Jx  u=4+Jx (b) x[1+x u=1+x
(©) xzwll—x u=1-x (d) (x+1)41/1+2x u=1+2x

2
(e) ad u=2x+1 x +l u=x+2
2x+1 (x+2)?
@ ==  u=x+4 () — u=x

Jxra 2++/x
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3. Integrate each of the following with respect to x using the suggested substitution:

2 2 2
(a) 2xcos (x ) u=x (b) 3xsin (x2+ ) wu=x +1
2 2
(c) xsec (2x ) u=2x (d) 4xtan (x ) u=x
2 3
() xcos(2x +1) u=2x +1 ) x sin(2+x) u=2+x

4. Use an appropriate substitution to integrate the following with respect to x:

(1++/x)> [+ (x)] x+2 2 +x-1
(a) B (b) Y (c) 213 (d) ——(l Y
x+1 x .2 Ccos (\/x_)
(® N ® il (g) xsin(x ) (h) B
sin [l} cos(e™) x X
i x jy coste ) K —F ) —
¥ x* » e* (9 cos2(x?) : sin?(x°)

13.6.1 Integration using Trigonometric Substitutions

e In this section we will deal with integrals which are not necessarily trigonometric
in form but using a substitution that is trigonometric in form.

Example 13.16

Find: j ! dx using the substitution x = sin (0).
1-x?
Solution:
x=sin® = dx=cosb db
Also I
\/l—x2 \/l—sin2 0
1
cos 6
Hence, '[ ! dx = I ! [cosO dO]
J1=x2 cos6
= [1de
=0+C
=sin ' x+C.
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Example 13.17

Find: I 1-x% dx using the substitution x = sin(0).

Solution:
x=sin® = dx=cosH db
Also \/l—xzz\/l—sin26 =cos 0

Hence, J.\/ 1-x% dx = Icosze do

= lJ‘1+cos29 do
2

_ l[6+ sm29}_c
2 2

Since, x=sin® = O=sin"'x.
Also, sin 26 =2 sin 0 cos 6

=2sin6 \ll—sin29 =2x\/1—x2
Hence, I 1-x% dx = %{sin_1x+x\/1—x2}+c.

Exercise 13.7 To be completed without the use of a calculator.
1. Integrate each of the following with respect to x, using the suggested substitution.
(@) —2= X =2sin 0 (b) ——2 X =3 cosd
4-x2 9—4x? 2
1
(c) ! 7 x=tan 0 (d) — x= étane
1+x 25+9x 3

2. Integrate each of the following with respect to x, using the suggested substitution.

(a) ! x=2cos0 (b) 1 x=§cose
\J4-x° \ 9—4x? 2

(©) y1-x* x=sin0 (d) 4-x° x=2cos 0

1 x=sin 0 2x+1 x=4cos 9O

© — O —

3. Integrate each of the following with respect to x, using the suggested substitution.

tan2 X

(a) 1 u = tan(x) (b)

1
COS X cos? (x)+/ 3tan(x)+2 ’

=

u=73tan (x) + 2
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13.7 Integration using Partial Fractions

13.7.1 Proper Fractions

A(x)

B(x)

o A proper fraction is a rational function where the degree of the denominator

is greater than the degree of the numerator.

. . . x*+2 x+2
> is a proper fraction, while ———— and ————
X +6x+5 x“+6x+5 x +6x+5

are improper fractions.

For example,

¢ An improper fraction can be converted into an expression involving a proper
fraction using polynomial division (other procedures are available) .

o If Ax) is an improper fraction, then using polynomial division,
X
we can rewrite the fraction as: Alx) _ o) + M,
B(x) B(x)

where ((x) is the quotient,
R(x) is the remainder which is of a lower degree than B(x) .

13.7.2 Partial Fractions

o Consider the sum of the proper fractions, L + 1 _
x+1  x+2
e After the addition is performed: 1 + 1 2x+3

x+l x+2  (x+D(x+2)

e When the process is reversed,

. 2x+3 . .
we rewrite —————— as a sum of several simpler proper fractions.
(x+D(x+2)
That is 2x+3 ! + !

S+ D(x+2)  x+l x+2
These simpler fractions are called partial fractions.

¢ The decomposition of a rational function into its partial fractions is determined by
several rules.

Rule 1 Proper Fractions
Only proper fractions may be decomposed into its partial fractions.

¢ Hence, an improper fraction cannot be decomposed into its partial fractions.
¢ To decompose an improper fraction into its partial fractions, we first need
to rewrite it into an expression involving proper fractions.
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Rule 2 Unique linear factors
Corresponding to a linear factor (ax + b) in the denominator of a proper fraction,

there exists a partial fraction of the form where A is a constant.

Example 13.18
X

Decompose into its partial fractions .
(x+1)(x-2)2x-1)

X

dx
(x+D)(x-2)2x-1)

Hence, determine _[

Solution:

x __4 B . C
(x+D)(x-2)2x-1) x+1 x-2 2x-1

_ A(x=2)2x-)+Bx+1)2x-1)+Cx+1)(x-2)
- (x+1)(x=2)(2x—1)

Hence x=Ax-2)2x-1)+Bx+D2x- 1)+ Cx+ 1)(x—2)
Substitute x=—1, 94 =1 = A=—%

x=2, 9B =2 = B=%

o) desd oo
Therefore ad 1,2 2

+Dx-2)2x-1)  9(x+1)  9(x-2) 9(2x-1)
Hence:

J- x dx—f -1 N 2 2
(x+D)(x-2)(2x-1) 9(x+1) 9(x-2) 92x-1)

=-— lzn|x+1| + 31n|x—2| - lln|2x—1| +C
9 9 9

(x—2)
(x+D(2x-1)

lln
9

Note:

o Since the identity x =A(x —1)(2x —1) + B(x + 1)(2x — 1) + C(x + 1)(x — 2} is true for all values of x,
we can determine the values of A, B and C by simply substituting several convenient values of x .
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Rule 3 Repeated linear factors

n
Corresponding to a factor (ax + b) in the denominator of a proper fraction, where n is a
positive integer, there exists n partial fractions of the form:
4 A A A

(ax+b)" (ax+b)® (ax+b) (ax+b)"

where A1, Ay, A3, A, are constants.

Example 13.19

Decompose into its partial fractions — - Hence, determine I——i—z dx
(x+D(x-1) (x+1)(x-1)
Solution:
Applying Rules 2 and 3:
X _ A + B + C :
(x+D)(x-D% @+D) -  (x-1)
_ Ax-D*+BG+D(x -1+ C(x+1)
(x+1D)(x 1)
2
Hence, x=A(x-1) +Bx+1)(x-1)+Cx+1)
Substitute x=—1 ~1=44 = A=—%
x=1 1=2C = C= %
x=0 0=4-B+C = B=%
Therefore: ad 5 = m + ! + ! 3
(x+D(x-1)" 4(x+D)  4x-1) 2(x-1)
Hence:

[———a&=] LIPS S S
(c+1D)(x-1)% 4x+1)  4x-1) 2(x-1)?

=—lln|x+1|+lln|x—1|— 1 +C
4 4 2(x-1)
= lln =) 1 +C
4 | (x+) 2(x-1
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Rule 4 Non-reducible quadratic factors

2
Corresponding to a non-reducible quadratic factor ax + bx + ¢ in the denominator of a
Ax+B

proper fraction, there exists a partial fraction of the form 3

(ax +bx+c).

where A and B are constants.

Example 13.20
Use partial fractions to determine j——x+—12— dx.
(x-D(x"+D
Solution:
Applying Rules 1 & 4:
x+1 _ 4 + Bx+C
-DE*+1) -D X% 41
_ AP D)+ (Bx+ O)x-1)
(x—1)(x% +1)
2
Hence, x+1=4x +1)+Bx+O)}x-1)
Substitute x=1 2=24 = A=1
x=0 1=4-C = C=0
x=2 3=54+2B+C = B=-1
Therefore x+12 = I + 2—x
x-D(x"+1) x-1  x“+1)
Hence:

x+1 1 X
_ T =
J.(x—l)(xz+1) IX—l x2+1)

= lnlx——1| —~—;—ln’x2+1‘ +C

x—1

x2+1

+ C.
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Exercise 13.8 To be completed without the use of a calculator.
1. Use partial fractions to integrate each of the following with respect to x:
X x+3 3x-1
a b c
@) x+2 ®) 2x+1 © 1-2x

2. Use partial fractions to integrate each of the following with respect to x:

1 x-1 5x-1
®) (x+D(x-D ®) 2x+1)(x-3) © (Bx+2)(2-x)
2x+1 x% -1 x—1
d —==*1- S
@ 2x% —5x+2 © (x+2)(x-3) ® (x+D(x-3)(x+2)

3. Use partial fractions to integrate each of the following with respect to x:

x+1 2x—1 2x+1
s b)) =~ - e
@ x(x—1)% ® x2(x+1) © (x+1)%(x+2)

@ x> IRV ERS) X+l
(x-D)%(x+1) (x% —4)(x+2) x> —6x% +9x

4. Use partial fractions to integrate each of the following with respect to x:

2
(@) x—1 (®) x—1 © 3x“ -2
e+ D% +1) (x+D(x% +x+1) (x=D1)(x* +x-1)
Addendum

Heaviside Cover-up Method for determining partial fractions involving linear factors

1 _ A 4 B
(y+Dh(y+2) y+1 y+2

Use the Heaviside cover-up method: 4= ! =
(y+2) =1
Y
= 1 = —
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14 Definite Integration

14.1 Integrals expressed as partial fractions

¢ The concept of definite integration was first introduced in Mathematics Methods
Units 3 & 4.

e This section extends the concept of definite integration to integrals requiring the
use of partial fractions.

Example 14.1
-1

Without the use of a calculator, evaluate I S dx
_2 (x=D(x-2)
Solution:
Integrand: x+1 =4 + B
(x-D(x-2) x-1 x-=-2
x+1=A4Ax-2)+B(x-1)
Substitute x =1 A=-2
Substitute x =2 B=3.
T x+l ) 3
Hence: J. ——dx = I +
) (x-D(x-2) ) (x-1) (x-2)

[—2ln|x—l|+3ln,x—2|]:;

- -1
3
=|In (x 2)2
| (x-D) _2
P R N e 5
i 4 9
(243}
=[n —|.
256
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Exercise 14.1 To be completed without the use of a calculator.

1. Evaluate each of the following integrals
3 -1

1 2x-1
® 'l(x+l)(x—1)dx ®) J.(x+1)(x+2) © _L(x—l)(x—Z) “

2. Evaluate each of the following integrals

x 2x% +1 X +6
(@) | dx (b) dx (c)
g(x+l)(x+2) '!.2x2—x I 2+3x+2
3. Evaluate each of the following integrals
1 ) 3 3
x“ =2 x=2 x
(@) I——z—dx ®) J.—?———dx ©) 1—3—2——dx
o (x+1D)7(x+2) X +x -1 S X" —x"—x+1
4. Evaluate each of the following integrals
3 2
5); 4x+1 s () J- 2 -2x-9 & () J- . _ dx
S (T +D(x-1) o(x +x+2)(x+1) o (X" +2)(x"+]

14.2 Method of Substitution

¢ This section extends the concept of definite integration to integration
using the method of substitution.

b
e To evaluate I f(x) dx using the substitution z = g(x):

a

1. Find the differential equivalent to dx.

2. Use the substitution to convert the limits from x = @ and x = b into
u = k and u = m respectively.

3. Convert f(x) into an expression ~(u) involving the new variable u.
This does not have to be a complete conversion. .

4. Integrate h(u) with respect to the new differential.

5. Substitute limits to obtain answer.
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Example 14.2
Evaluate each of the following using the suggested substitution:
1 1 1
(a) jx 1-x dx u=1-x (b) f dx x=2sinb.
0 0 4-x?
Solution:
@ u=1l-x = dr=-du.
Limits: x=0 = u=1land x=1 = u=0.
1 0
Hence: xIx l-—x dx = —I(l—u)\/; du
0 1
01 3
= —qu —u? du
1
3 s7”
i
3 5
|
_4
15

(b) x=2sin6 = dx=2cosHdb

Limits: x=0 = 06=0 and x=1 = sin(0)=1/2 = 6=7/6

1
\ 4—4sin% 0

1

J 4(1—sin? 0)
1

— % 2c0s0 db

\ 4cos? @

x2cos0 do

1
Hence: J
0

x2cos0 do

Q,
D

Il
Ot 8 O |d O[3 Ot

]
—
D
| S—
Oonvla

a3
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Exercise 14.2

1. Evaluate each of the following using an appropriate substitution:

L L 1 9 4x 6 X
(a) J(;\/2+\/;dx (b) {mdx () _J.lmdx (d) {\/x___éldx

2. Evaluate each of the following using an appropriate substitution:

I n
Jr > 2

(a) j 2xsinx? dx (b) Tszecz(xz)dx (©) j(cosx) (sinx) dx
0 0

3. Evaluate each of the following using an appropriate substitution:

2 1 1
t 1

(@) |—p—=dx (b)

: '(')-\/1—4x2 I\/4 9x?

(©) T 1-4x% dx
0

14.3 Area of Regions Trapped between Curves

¢ In this section, we will extend the concept of the area trapped between curves,
first introduced in Mathematics Methods Units 3 & 4.

e If f(x)=g(x) for a <x < b, the area of the region v
trapped between y = f(x) and y = g(x) and the lines
x=aand x = b is given by:

b
A= [ f(x)-g(x) dx

e Where the use of a CAS calculator is permitted:
the area of the region trapped between the curves
y=f(x) and y = g(x) and the lines x = g and x = b is given by

b
A= [|f()-g)| dx.

« In this case, it is not necessary to locate the relative positions
of the two curves.
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Example 14.3
Without the use of a calculator, find the area trapped between the curves y=x,y = 1 and the
x
: 1
linesx = — and x = 2.
2
Solution:

1 . .
The curves y = — and y = x intersect at the point
x

y
where x = 1. i
(1,1) AN
. 1 1 . 2 y=x
For region A, 5 <x<1,they= — curveis
X
1
consistently “above” the y = x curve. T Yo
Hence, the area of the trapped region is given by:
1 1 } 1 X
Area(A)=I——xdx 2
L X
2
|
x2
= lnl x ——}
2|
2
1 1 1
=lln)-=|-In=-—=|=1 2—g
2 8 8
For region B, 1 <x <2, the y = x curve is consistently “above” the y = 1 curve.
x
Hence, the area of the trapped region is given by:
2
1
Area (B) = j x——dx
1 X
2
x2
= [——lnl x I}
2
1
1 _3
=(2-n(2))——=—-In2
( ( )) 2 2
Hence, the area of the trapped region is: F =
3 3 j‘|——.ar|dar
Area=|{In2—-=|+|==In2 1
8 2 2 5
2 -_—
= 2 s g
8
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Exercise 14.3
Questions 1 to 4 (inclusive) are to be completed without the use of a calculator.

1. Determine the area of the region trapped between these two curves.

@) y=x(x-1),y=x3 —x) (b)y=x2—4,y=—3x2
(@ y=tx ~1),y=3x @ y=x,y=

2. Find the area of the region trapped between the two given curves and the indicated lines.
(a) y=—§,y=—x,x=—2 ande—% () y=x,y=x(x—-1),x=-1,andx=1
(¢) y=sin{x), y=rcos(x),x=0and x = g d) y= ezx, y= e_x, x=1

3. Determine the area of the region trapped between these two curves.
2

(@ y=lx+1[,y=1-x ) y=-lx-1l,y=1-x
2
© y=lx-2],y=+x @ y=lx-1l,y=1lx -1l
4. Find the area of the region trapped by:
- 2
(a)y=ex,y=€xay=€ (b) y=x-2,x=4-y
2x 2 —Xx 2
) y=—7y=x d y=——,y=2-x,x=0,x=1.
x+1 x+2

*5. Determine the area of the region trapped by:

(a) y=sinx,y =—2x+1, the y-axis (b) y=cosx,y= %x—l, the y-axis
T T

6. The shaded region in the accompanying diagram is

bounded by the curve, y = X and the lines

(x—4)(x+4)
y=-x,x=—1and x=2. Use a calculus method to find
the area of the shaded region.

7. The shaded region in the accompanying diagram is

2
bounded by the curve, y = e and the lines
(x—4)(x+4)
y=-x,x=-2and x=2. Use a calculus method to find
the area of the shaded region.
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8. The shaded region in the accompanying diagram is

1 .
bounded by the curve y= ———— and the lines
\ 16— x?

y=2and x==2. Use a calculus method to find the area
of the shaded region.

9. The shaded region in the accompanying diagram is

bounded by the curve y = 4/ 9— 4x? and x-axis.

Use a calculus method to find the area of the shaded
region.

10. Use your CAS calculator to determine the area of the region trapped between the
following curves:
(a) y=2+cosx,y=x,x=0 (b) y=2+cos (x),y=x,x=-2
2 2

(c) y=2+sin(x)and y=x (d) y=2+sin(x), y=x ,x=4.

11. Use your CAS calculator to determine the area of the region trapped between the
following curves:
(a)y=xe_x2,y=0,x=ﬂ:1 (b)yzxcos(xz),y=0,x=ﬂ:1
(c) y=xlnx,y=0,x=0.5,x=2 (d) y= cosxesmx,y=0,x=ﬂ:1

*12. Use your CAS calculator to determine the area of the region trapped between the
following curves:
(a)x=y2,x=4 (b) x=y2,x+y—2=0
© y2—4x=0,y2+4x—16=0 (d)x=y4,x=2—y4

3
*13. Find the area of the region trapped between y =x ,y = 3x — 2 and the lines x = -3
and x = b for:

(a) 3<b<-2
(b) -2<b<1
() b>1.
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14.4 Volume of Revolution

14.4.1 About the x-axis

e Consider the region trapped by the curve y = f(x), the x-axis and
the lines x =a and x = b.

(o)
o Ifthis region is rotated 360 about the x-axis,
then a solid of revolution is formed.

« In this case, the shape of the solid is somewhat similar
to that of a “flower pot™.

° To determine the volume of the solid formed,
let the shaded region be divided into » rectangular
strips of height f(x) and of uniform width &x.
 Each strip is rotated 3»600 about the x-axis,
forming a stack of circular cylindrical
discs of radius f(x) and length dx.
« The volume of a disc is «[ f (x)]2 Ox.
« The solid of revolution formed is

approximated by a stack of circular cylindrical discs.
o Hence volume of solid formed is

x=b b
r= lm Y alfFex =xf FOP dx
ox—0 Y=g o
increment dx

e Hence, the volume of solid formed when the region trapped by the curve y = f(x),
the x-axis, x = a and x = b is rotated 2 radians about the x-axis is given by:

b
v=n[lf() dx

« Note that in the formula for V, the f(x) term is squared.
Hence, it is not essential that the curve y = f(x)
be completely above the x-axis for a <x < b.
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Example 14.4

Determine the volume of the solid formed when the region trapped between the curve

2
y=x — 1 the x-axis, y- axis and the line x = 2 is rotated 27 radians about the x-axis.

Solution:

2 2
Volume = n[(x*~1)? dv = mfx* - 2x" +1dx
0

0 ..,
X2 2 i )
=n|——"—+x
5 3 [
O _5_._
46 . 3
= —— units .
15

14.4.2 About the y-axis

e Similarly, the volume of the solid formed when
the region trapped by the curve x = £ (),
the y-axis and the lines y = a and y = b is rotated
about the y-axis, is given by:

b
v=n[lfO)T dy

e Note that the equation of the curve must be written
in the form x = f(y) and y is the variable of the integral.

Example 14.5

Determine the volume of the solid formed when the region trapped between the curve

y= LZ , the y-axis, and the lines y = 1 and y = 4 is rotated about the y-axis.
x+

Solution:
y= 4 :>)c+2=i :>x=i—2 y
x+2 y y
4 2 4 Y
Volume V= th.[i—ZJ dx = RIE—E+4 dy N
y z2 y NP N s
1 ly T T T X
4 -4 -2 2 4
1
= n|:__6—16ln|y,+4y} \ AS
y

1
3
= 24n—-327in2 units .
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14.4.3 Volume generated by region trapped between two curves

o Consider f(x) > g(x) for a <x<b. The region y
trapped between y = f(x) and y = g(x) and
the lines x = a and x = b is rotated about the x-axis. /
The volume of the solid formed is obtained by

y = fix)

subtraction and is given by: N
y = glx)
¥ = Volume of larger — Volume of smaller .
Solid Solid . b

b b
[ [fOF de—n[[g() dr

a

b
= 2[[f P -[g@)) dr

e Where the use of a CAS calculator is permitted, the volume of the solid created
is given by:

b
7= [P -leer| .

« In this case, it is not necessary to locate the relative positions
of the two curves.

e Caution must be exercised when rotating regions
trapped between two curves. It is possible that on
rotation, one part of the solid formed may disappear
into a larger part.

o In the accompanying diagram, when the shaded
region is rotated about the x-axis, the solid
formed by the triangle below the x-axis
(smaller triangle) is “swallowed” up by the solid
formed by the triangle above the x-axis (larger triangle).
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Example 14.6

Determine the volume of the solid formed when the region trapped between the curves y =x,

y= 1 and the lines x = 1 and x = 2 is rotated about the x-axis.

X
Solution:
. 1 1 .
For region A, 3 <x<1,they= — curveis y
x by

consistently “above” the y = x curve.

{1,1) AN
L2 1 T y=x
Hence, Va= TEJ- — dx—TcJ.x2 dx
1\ 1 y=l
2 2 x
1 ] 2
= nj.(—j —x?% dx ! X
1\X 2
2
1
1 ¥ 17w
= 7'c — — — = —
X 3 1 24
2
) ) ) |
For region B, 1 <x <2, the y = x curve is consistently “above” the y = — curve.
x
2 2 1 2
Hence, Vp=m I x? dx—nI(—] dx
1 PN
2 1 2
= TcJ.xz —[— dx
1 x
12
X -1 1n
= 1[ —_—— ——— = —_
3 x 6
.|
. . 6l . 3
Hence, the volume of the solid formedis: V=V,4+ Vz= Ef units .
Note: > =
o With aZCAS calculator, this volume is given by nj‘ Lz_ -
1 1l
V= nj ——x*|dx . 2
X 6lem
1 24
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Exercise 14.4

1. Without the use of a calculator, find the volume of the solid formed when the region
trapped between the curve y = f(x) and the line y = 0 is rotated about the x-axis.
2

(@ y=x(2-x) (b)y=x2—4
(©) y=x(x+2) dy=x(x-1
() y=sin(x) 0<x<2n (f) y=cos(x/2) —-m<x<m

2. Find the volume of the solid generated when the region trapped between the given curve,
the x-axis and the indicated lines is rotated about the x-axis.

(@ y=x(x-1)x=-1x=1 ®) y=x+2)x-3)x=-1,x=4

© y=(1-x)x+3)x=-4x=2 (d y=Gx+DE+2)x-1)x=-25x=1
(e)y=—2+ex;x=—l,x=2 ) y=Inx);x=12andx=e

(g) y=|x|;x=—1 andx=2 (h) y=|x(x—l)|;x=—1 andx=1.

3. Find the volume of the solid generated when the region trapped between the given curve,
the y-axis and the indicated line(s) is rotated 360° about the y-axis.

(a)y=l;y=1andy=2 (b) y= 22,y 0.5andy=3
X
1 1 1

(C) y=—s5y=—= andy 2 (d) y=—; y:_zandy:_l
1-x 2 g_x

(e)y=(x—1);y=0andy=1 ) y=x +1; y=—1 andy=2

3 2
(@) x=+9-y%,x=0 )y =x,y=4,x=0

4. Find the volume of the solid generated when the region trapped between the two given
curves and the indicated line(s) is rotated about the x-axis.
(a) y=3x,y=x2,x=—l and x =2
(b) y=x2,y=x3,x=0 and x =2
© y—x2+5 y—x3 x=0andx=3
(d y= Silzn (x), y =cos (x),x=0and x =7/2

@ y=¢ .y=e ,x=1
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15 Numerical Integration

15.1 Numerical Methods

The Fundamental Theorem of Calculus was introduced in Mathematics Methods
Units 3 & 4 and states that:

b
[ f() dx = F(b) - F(a) where F(x) is an anti-derivative of f (x).

a

1

2

Consider Je‘x dx . In this instance, the Fundamental Theorem of Calculus fails as
0

2

the anti-derivative of e~ “does not exist”.

The value of this definite integral and many others may however be approximated
using numerical methods.

Under certain conditions, a definite integral
represents the area of a bounded region

between the curve and the x-axis.
1

2
. Ie"x dx represents the area of the

0 .
region trapped between the curve, the x-axis and the lines x =0 and x = 1.

Numerical methods estimate the values of definite integrals by approximating the
area of the regions using strips of uniform width. The accuracy of the
approximations obtained depend on:

o how many strips are used e how the strips are formed.

15.2 The Rectangular Rules

The rectangular rules use rectangular strips to approximate the area of the trapped
region. Among others, these strips may be drawn as left-boxes, right-boxes or
middle-boxes.

fix) 1) fx)
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¢ Consider the curve y = f(x) which is continuous over the interval a <x < b.
o The trapped region R is divided in » rectangular strips (boxes)
of uniform width.

. Width of strip/box is w= 2—2.
n
o The points of partition on the x-axis or “edges” of the strips are located at
x;=a+tiwfori=0,1,2,...,n
e The Left Box Method
o The area ofabox =w x f(x;)
n-1 n—1
e Hence, Area of R = Z wx f(x;) = wx Zf(x,-).
i=0 i=0
e The Right Box Method
o The area ofabox=w x f(x;,1)
n-1 n—1
o Hence, Area of R = z wx f(x;41) = wx Z S (xip1).
i=0 i=0

e The Middle Box Method (Mid-point Method)
e The area of a box = w x f[_xi tXit] j

2
n-1 n—1
e Hence, Area of R = Z{fo[mﬂ = wx Z f(xz +xz+1)_
i=0 2 i=0 2
e The table below summarises the above results.
-1
Left-box R
wX X;
method l,gof (x:)
Width of strip, w = b-a
. n—1 n
Right-box wx D f(%i41) Points of partition:
method “ _ .
i=0 x; =a+iw
Middle- nel Lo fori=0,1,2,...,n.
box/Mid- wx Y. f(_’—zl—ﬂ)
point Method i=0

¢ Note that the three methods discussed use different points of partitions.
o The region being investigated must be completely above or
completely below the x-axis.
o Of the three methods discussed, the middle-box or mid-point method is the
preferred method.
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Example 15.1

With a CAS calculator, use the mid-point method with 100 uniform strips to estimate the

3
value of J. x(3—x) dx . Estimate the percentage error.

1

Solution:

3

I x(3—x) dx refers to the area of the region trapped between the curve y = x(3 — x),

1

the x-axis and the lines x = 1 and x = 3. Further, this region is completely above the x-axis.

n=100 = width of strip= 3-1 0.02
100

Points of partition x; =1+ 0.02i fori=0,1,2,...,100.
: X; +X;
Area of strip =0.02 x f (’—’—H) Define f(x)=xx(3-x) -
2 dore [[]
: . 99
0,02 x f((1+0.02z)+(1+0.02(z +1)] 0.02x3 (FC1.0140.0260)
2 16667
=0.02 x £(1.01+0.02i) 3 Sees
J\f(x)dx
3 99 ' @
Hence, 3—x)dx = 0.02 1.01+0.02i 3
ence !x( X) xg(:)f( i) o
= 5688 3 .o
19
~ 16667 _ 3.3334. El
5000 . 002
3 10
But [x(3-x) dx = < = Brror=0022%.
1
15.3 The Trapezium Rule
e The trapezium rule uses strips of uniform width in the i
shape of trapeziums to approximate the area of the / 7
trapped region. The trapezium rule averages the
results of the left-box and right-box methods. /
e Consider the curve y = f(x) which is continuous over /
the interval a <x < b. Let number of strips be .
e Width of strip/box is w = b-a \
n

» The points of partition on the x-axis or “edges™ of the strips are located at

x;=a+iwfori=0,1,2,...,n
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« The area of trapezoidal strip = % < [f(x)+ f(xi41)] xw

n—=1
o Hence, Area = %XZ[f(xi)"'f(le)]'
=0

Example 15.2

With a CAS calculator, use the trapezium rule with 100 uniform strips to estimate the value of
3

I x(3—x) dx. Estimate the percentage error.
1

Solution:
3

J-x(3 —x) dx refers to the area of the region trapped between the curve y = x(3 —x),
1

the x-axis and the lines x = 1 and x = 3. Further, this region is completely above the x-axis.

n=100 = width of strip = Kt 0.02
100

Points of partition x; =1+ 0.02; fori=0,1,2,...,100.

Area of strip = 0.01 x [ £(1 + 0.02i) + £(1 +0.02( + 1)]
= 0.01 x [ £(1 +0.02i) + £(1.02 + 0.02)]

Hence, Define f(x)=xX(3-x) D
3 0 done
jx(3 —x) dx a.meﬁ(f(u@.azxi>+f<1.82+e.azxi>)
i=
1 8333
99 2 2508
= 0.01x D[ f(1+0.02i)+ f(1.02+0.025)] [t
i=0 1
18
- 8333 3.3332. 0333 18 3
2500 TR
; 10 2
Butjx(3—x)dx=—. : )
1 3 28

Hence,error = —0.004%.
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15.4 Simpson’s Rule

e Simpson’s rule uses an even number of strips of
uniform width. The curved end of the strip is
approximated by a parabola passing through the
two edges of the strip and the midpoint of the strip.

o Consider the curve y = f(x) which is continuous
over the interval a <x < b.

e Let number of strips be 2.

Parabolic interpolation

« Width of strip/box is w = bz_ a
n
e Points of partition x; =a+ wi fori=0,1,2,...,2n

e It can be shown that the area is given by

_ n=1 n-1
4= [b6n"j{f<a>+f(b)+4Zf(xz,-+1)+22f(xz,-) -
i=0 i=1

Example 15.3

With a CAS calculator, use Simpson’s Rule with 100 uniform strips to estimate the value of
3

jex dx . Estimate the percentage error.
1
Solution:

3

Iex dx refers to the area of the region trapped between the curve y = €%, the x-axis and
1

the lines x = 1 and x = 3. Further, this region is completely above the x-axis.

Number of strips 2n =100 = n=150. Width of strip = 31—0_—01— =0.02.

Points of partition x; =1+ 0.02i fori=0,1,2,...,100.

3 B n—1 n—-1
[ ax = (b6na}<{f(a)+f(b)+4Zf(x2i+1)+2Zf(x2i)}
i=0 i=l

1

49 49
= @;&]{f(l)+f(3)+ 4% f(1+0.02Q2i+1))+ 22f(1+0.02(2i))}
1

49 49
~ (l_;_ojx[f(l)+f(3)+ 43 £(1.02+0.04) + 22f(1+0.04i)}

i=0 i=1
=~ 17.367 255 11

© O.T.Lee 212




15 Numerical Integration

3 X Define flx)=e® -
But [e* dx = 1736725509 - . done
1 ﬁxcfcsnf(1>+4><Zé(f<1.a2+a.a4i))+2x21(f<1+a.a4i>)>
_8 i= i=
Hence, error =8.89 x 10 % 3 H-3672551L
ans-ff(x)dx
- 108
ff(x)dx
| ! 0. 00000088328
Exercise 15.1 A CAS Calculator is essential for this exercise.

1. The accompanying diagram shows the 0 N )
graph of y = f(x). A table of values 0 0
accompanies this graph. Use 4 strips

. . 0.1 0.4
with each of the following methods to 02 0.78
estimate the area of the shaded region. 0'3 1'15
(a) Mid-point method. . .

. 0.4 1.47
(b) Trapezium Rule.
(c) Simpson’s Rule. 0.5 1.76
Hence, compare the relative 0.6 1.98
accuracies of each of these methods if the area of this region 0.7 2.14
correct to four decimal places is 1.0824 . 0.8 223

2. Use the mid-point method with the stated number of strips to estimate the value of each
of the following integrals. Hence, calculate the percentage error for the method.

4 3
(a) [x(4-x) dy; 50 strips ® | x2 —16 dx; 100 strips.
1 -2

3. Use the mid-point method with 7 strips to estimate each of the following integrals.

1 1
@ [ de,n=20 (b) [sin (x?) dr; n=50
0 0

4. Use the trapezium rule with 100 strips to estimate each of the following integrals.

5 1
@ [ (x> +1) dx ®) j sin(e™™) dx
1 -1

5. Use Simpson’s Rule with 100 strips to estimate each of the following integrals.
4 1
() J S gy (b) y= I cosx dx
0 0.5
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16 First Order Differential Equations

16.1 First Order Differential Equations of the form % = f(x)

o Consider the differential equation ii_dxy = f(x).

e This is a first order differential equation. (The order of a differential
equation i§ determined by the highest derivative in the equation.)
o As anti-differentiation is the reverse of differentiation, the solution to the

differential equation is y = I f(x)dx +C.
o This is known as the general solution to the differential equation.
It consists of a family of integral curves of the form y = j f(x)dx +C.
o If additional information (called initial/boundary conditions) consisting of a

set of point(s) is known, then the constant C can be determined. The
solution obtained is called a particular solution to the differential equation.

Example 16.1

d_ 2
2 1

Find the general solution to the differential equation
x

Hence, find the particular solution corresponding to the initial condition of x =0, y =2

Solution:
a 2 2
dx  x* -1 x° =1

Decompose integrand into its partial fractions:
2 _ 2 _ 4 4 B
-1 (x-Dx+D)  x-1 x+1
2=Ax+1)+B(x-1)

Substitute x = —1: =]

Substitute x = 1: A=

Hence, y= R S dx
x—=1 x+1

General Solution: y=ln|x—l' —ln|x+1| +C

Initial Conditions:
x=0,y=2 = y=lnlx—1| —ln|x+ll +2

dScul'u'e['_-..-’= 2 Xy x=H, }'=2]
x<—-1

{v==1n( e+1] 10 |e-1] +2}

simplify(
2|

+2. {5.-=1n[

x-1

Particular Solution: y=In
x+2

x~-1

x+1
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Exercise 16.1

To be completed without the use of a calculator.

1. Find the particular solution to each of the following differential equations:

dy 2x
(@ =—=—5—,(0,-4)
dx x4l
dy x-3
(¢c) —=———,(0,In2)
dx  x243x+2
dy 2 1 n
© =g G

dy  1-
b) —= ,(0,2
0) 5= 57 0.2)
dy -1 i
(d — = (=1, 2)
dx 1— x2 2
dy 2 T
— =241-x7,(1, =
) o x5 ( 2)

dy

2
2. The curve y = f(x), has gradient function given by - = g sin Tx, where a is a real

constant. Find the equation of the curve given that it passes through the origin and

(1, —2m).

3. The curve y = f(x), has gradient function given by f'(x) = a sin x cos x, where a is a real
constant. Find the equation of the curve given that it passes through the points (0, —2)

T
d(—=,-1.
and (—, 1)

4. The tangent to the curve y = f(x) at the point (g , 4) 1s parallel to the line y = 12x + 1.

dy _

3
The gradient function of the curve is given by - a sin x, where a is a real constant.

Find the equation of the curve given that it also passes through the point (0, —4).

dy _

5. The gradient function of the curve is given by o 15x+/ x+a , where a is a real

constant. Find the equation of the curve given that it has a stationary point at (-1, 2).

6. The tangent to the curve y = f(x) at the point (0, 2) is parallel to the line y = 2x + 3.

The gradient function of the curve is given by —=

Find the equation of the curve.

d —4x+a .
4 , where a is a real constant.

dx  2x+1
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16.2 First Order Differential Equations of the form d_y =g(y)

dt

16.2.1 First Order Differential Equations of the form % =ay+b

16.2.2 Separation of Variables Method for solving

Let y = f(¢). If the rate of change of y with respect to time ¢ is proportional to y,
then the relationship can be expressed symbolically as:

dy
RICANS I
a7
dy
= = = 1T
dt ky

Statements I and II express an expornential growth and decay relationship between

the two variables. This was discussed in Units 3 & 4 of the Mathematics Methods

course. It was also mentioned that if;
dy _
dt

In the section that follows, a mathematical technique referred to as the method of
separation of variables will be used to prove the above result.

= y=ype.

dy
— =ay+b
dt Y

In this method, we will consider dy and dt as differentials.

Separate the variables/differentials in % =ky
¢
so that the “y’s” are all on the same side of the equation:
Y ra
Y

Integrate the equation: I % dy = J. k dt

Inlyl =kt+C
Rewrite in exponential form:  y= ke (As C>0 v L)
Separate the exponents: y= et M
When = 0: y= e
Hence, ¢C is the initial value for y; denote this as yy .

Hence, the solution to the differential equation ? =ky isy=yp M ,
t

where yy is the initial value for y.
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i

y
Hence, & represents the percentage growth rate for y.
o If k>0, then the solution is an exponential growth function.
e If £ <0, then the solution is an exponential decay function.

&

e Rewriting the differential equation, =k.

Example 16.2

Without the use of a calculator, use the separation of variables method to solve the differential

equation % =-0.05y given that when ¢ = 0 minutes, y = 10 000.

Solution:
P —-0.05
dt Y
. dy
Separate the variables: — =-0.05 dr
y
Integrate: I—l- dy =-0.05 jl dt
y
In(y)=-0.05¢+C
y= e 0051+C : )
dSolvely=—0.85+ v, £,y t=8, y=10800) [~
When 7=0,y=10000 = ¢ =10000 ey P Ep Y _t}H
Hence »=10000 &0-05¢ v=10000-¢ 20
Example 16.3

Use the separation of variables method to find the general solution to % =2y-1.
t

Solution:
T T
Hence: %ln Qy-1) =t+C [Ignore 2y — 1 <0.]
2y-1= 62t+K
Therefore, y= %[1 +A4e¥ ] where 4 = eX is a constant.
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Example 16.4

[}
The initial temperature of a body is 100 C and the surrounding temperature is a constant

20 0C. The body cools to 60 °C in 25 minutes. The rate of cooling is proportional to the
difference in temperature between the body and the surrounding medium.
(a) Use a calculus method to show that the temperature after # minutes, 6, is given

by 6 =20+ 80 e(0.04in2)r. Hence, find the temperature of the body after 100 minutes.
(b) Determine the time it takes for the temperature of the body to reach 20 0C.

Solution:
(a) Rate of cooling oc (0 — 20).
Hence: a9 _ —k (6 —20).
dt

Separate the variables: _49 —kdt
0-20

Integrate: I _6%(—) do =—k|ldt

In (0 —20) = —kt + C
e _ 20 — e—kl+C

When £=0,0=100: = ¢ =80

Therefore: 0=20+80e ™
When ¢ =25, 0 = 60: 40 = 80 ¢ >
k=0.04 In2
Therefore, 0 =20+ 80 (0:04n2)r
When = 100: 6 =20+ 8042
=25 °C.

(b) From the equation 6 =20+ 80 e
6 = 20 is an asymptote.

~(0.04In2)1

Hence, in theory the body will never reach 20 0C.
However, in practice if we assume that 20.01 = 20:

20 + 80~ (0-04n2)t _ 50 1
f =~ 324 minutes.
That is, it will take about 324 minutes.

doolve (3 =—ke 3 -200, £, 3, £20, y=100)
{y=0.¢ K tizp}
colve(8@- % 420268, k) | £=25

_In(2)
{k' 25
In(2)
_—25 . t
2@ +20 | r=1688
25
In(2)
_—25 N t
solye(3@- € +20=20.01,¥)

{t=324. 1445071}
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Example 16.5

A container contains 10 litres of a salt solution with a concentration of 5 g of salt per litre.
Another solution with a concentration of 10 g of the same salt per litre flows into the
container at a rate of 2 litres per minute. The concentration of the salt solution in the
container is kept uniform by constant stirring. The mixture flows out of the container at a rate
of 2 litres per minute.

(a) Show that, Q, the amount of salt after # minutes, is given by 0 =100 - 50e

—0.2¢

(b) Show that the concentration of the salt in the mixture cannot exceed 10 g per litre.

Solution:

(2)

(b)

d o .
7Q = Rate of salt “flowing in”” — Rate of salt “flowing out”.

¢
At any time ¢, there will be 10 litres of the mixture in the container.
Since at time ¢, the amount of salt present is O, the concentration of

the mixture at time ¢, is % g/L.
The mixture is flowing out of the container at a rate of 2 L/min.

Hence, the rate with which the salt is “flowing out” of the container

isg><2=g
10

g/min.

The rate with which salt is flowing in is 2 x 10 =20 g/min .

Therefore, d—Q =20- 0
dt 5
_100-¢0
5
Separate the variables, @ _1 dt
100-Q 5
Integrate j 0 _ ljl dt
100-Q 5

~In(100 - 0)=02¢+K

When =0, 0 = 50, = Y =50
Hence, Q=100-50 e 02
Ast— oo, e 92 0.

Hence, as ¢ — o, Q — 100 (from the lower end) .
That is, as t — oo, the concentration — 100/10 = 10 g/L.
Hence, the concentration of the mixture cannot exceed 10 g/L .
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Exercise 16.2
1. Use the separation of variables method to find the particular solution to:

(a) Z—J;zo.02y; when =0, y=100 (b) %—3y=0; when 1=0, y=50

() %=2+y; when 1= 0, y=200 (d) %=4—3y; when =0, y =400
(e) % =—2(1 + 5y); y(0) = 100 ® % =10 (1 -2y); »(0) =200

2. A variable y experiences exponential growth with a percentage growth rate of 3% per
hour. Given y(0) = 100 000, describe the growth in y in terms of a differential equation.

3. A bacterial colony grows in such a way that its growth rate at time # (minutes) is equal to
one third its population at time ¢ (minutes). Describe the population growth in terms
of a differential equation given that the initial population is 100 000.

4. The radioactive substance beryllium decays according to the differential equation

-7
% =—1.5 x 10 y where time ¢ is measured in years. Determine its half-life.
t

5. 30% of a radioactive substance disappears after 100 years. Determine the half-life
of the substance given that the decay is exponential. Determine the number of years
that has to lapse before there is only 5% of the original substance left.

6. If a radiation dosage of 0.2 rad is sufficient to kill 50% of a population of cancer cells,
determine the dosage required to kill 99% of the cancer cells present. Assume that the
rate with which the cancer cells are killed by the radiation is proportional to the number
cells present.

7. In a medical procedure, a tracer dye is injected into the pancreas to measure its function
rate. In a pancreas that is functioning normally, 4% of the dye will be excreted each
minute. A dosage of 0.5g of the dye is administered to a patient. Determine the total
amount of dye that will be secreted after 1 hour if the pancreas was functioning normally.

8. At the start of 1975 it was estimated that the world’s population was 4 billion. Determine
the percentage growth/decay rate for the world’s population to exponentially:
(a) increase to 5 billion in 10 years (b) decline (!) to 3 billion in 100 years.

[}
9. The original temperature of a body is 90 C and the surrounding temperature is a constant

20 °C. The body cools to 70 °C in 5 minutes. Assume that the rate of cooling is
proportional to the difference between the temperature of the body and that of the
surrounding medium.

(a) Show that the temperature, 6, after  minutes is of the form 6 =20 + 70e
(b) Find the time taken for the temperature of the body to drop to 35 oC.

—kt
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10. The original temperature of a body is 800 0C and the surrounding temperature is a

constant 35 C. The body cools to 600 °C in 10 minutes. Assume that the rate of cooling
is proportional to the difference between the temperature of the body and that of the
surrounding medium.

(a) Use a calculus method to show that the temperature, 0, after # minutes is given by

0=35+765¢""1 , giving the value of &.
(b) Find the time taken for the temperature of the body to drop to 100 oC.

11. The relationship between the resistance current / and time ¢ in an electric circuit is given

by % =8—41. Given that /=0 amps when ¢ = 0 seconds, find / in term of z.

12. A tank contains 100 litres of a salt solution which has 40 g of dissolved salt. Water flows
into the tank at a rate of 2 L/min. The concentration of the salt solution in the tank is kept
uniform by constant stirring. The mixture is siphoned out of the tank at a rate of

2 L/min. The amount of salt at time ¢ minutes is 0 g.
t

(a) Show that CCII—Q = ——5—%. Hence, use a calculus method to show that O =40 e 50 .
t

(b) Find the time taken for the concentration to drop to 0.1 g/L .

13. A tank contains 100 litres of brine with a concentration of 5 g/L. Fresh brine with a
concentration of 20 g/L flows into the tank at a rate of 4 litres per minute. The
concentration of the solution in the tank is kept uniform by constant stirring. The mixture
flows out of the container at a rate of 4 litres per minute. The amount of salt at time ¢
minutes is 0 g.

a .
(a) Show that ?Q =a- %— , giving the values of the constants a and b.
4
(b) Hence, show that Q=m —n e M , giving the values of the constants m, » and £.
(c) Find when the concentration of the mixture in the tank reaches 6 g/L.
(d) Find u and v, such that for any timef, u < QO <v.

14. A tank contains 500 litres of brine with a concentration of 20 g/L. Fresh brine with a
concentration of 2 g/L. flows into the tank at a rate of 8 litres per minute. The
concentration of the solution in the tank is kept uniform by constant stirring. The mixture
flows out of the container at a rate of 8 litres per minute. The amount of salt at time #
minutes is Q g.

(a) Show that %Q =a- % , giving the values of the constants a and b.
t
(b) Hence, showthat Q=m+n e M , giving the values of the constants m, » and £.

(c) Find when the concentration of the mixture in the tank reaches 5 g/L.
(d) Find u and v, such that for any time t, u < Q< v.
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16.2.3 Separation of Variables Method for solving logistic equations: % =ay(b-y)

o The exponential growth model —Z—% = ky with solution y = y, et

allows the variable y to grow indefinitely (as ¢ — 0, y — ).

¢ In many disciplines, for example in biology/ecology, the exponential growth model
is effective in describing the growth of the variable (population) in the early stages.
However, because of constraints of space, food and other factors, the growth
declines in the later stages and reaches a limit. Hence, we require a model that
supports exponential growth in the early stages but with a slowing of growth in the
later stages.

e A model that meets these requirements is the logistic growth model which is

represented by the differential equation % = ky[l - %) = % wb-y)

with solution y = where b, k and A4 are constants.

1+ de™M
The solution to a logistic differential equation is called a logistic function.

e The diagrams below compare the graph of an exponential growth model with that
of a logistic growth model.

Y  Exponential Growth y Logistic Growth

1000 -~
1000

500 4+ \
4 1000

~1x

y =
1+100e”°

————t—t—t x ept—t+———t—t—t—> x
50 100 50 100

o Observe that the logistic curve has a horizontal asymptote which caps its growth.
This asymptote marks the limiting value for y. In population modelling, this limit
is called the carrying capacity. The exponential curve, on the other hand conveys
indefinite growth.

dy y k . .
e For — =ky|1-=| = —y(b-y) with solutiony= ———:
di ky[ bj p0 Y Y e
« the initial value for y, y(0) = b
1+ 4
» the constant % is the growth constant
« the constant 4 is the limiting value for y.
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Example 16.6

Find the general solution to the differential equation % = ky[l - %) = % (b -y)

where b and k are constants. Hence, determine the limiting value of y in terms of b and/or £.

Solution:
: 1 k
Separate the variables: =—dt
y(b-y) b
Integrate: I ! ly = k dt
y(b-y) b
Decompose integrand into its partial fractions:
1 _R S
oy
yb-y) y b=y
I1=Rb-y)+Sy
Substitute y = 0: = %
Substitute y = b: S= %
Hence: 1l —+—— dy = J' dt
b’y b-y
1 1
—t——dy = ﬂ dt
y b-y
m(JLj kt+C
-y
DA Y
-y
y=M (b-y)
y(+MeMy=pmpe
y= Mbe
1+ MM
.. ) kt b
Divide each term with Me™ : Y=
= +1
Me
b
Hence: y=—
e 41

Ast—>w,de™ 50 and y—>b.
Hence, limiting value for y is b.
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Example 16.7
The population P of a colony of marsupials on a remote island at time ¢ years is modelled by

the differential equation % =0.0001P (5 000 — P). At t=0, the size of the colony was 500.

(a) Use the variables separable method to show that P = for constants 4, B and k.

—kt
1+ Be
(b) Determine the maximum size of this colony. Discuss when the colony reaches this size.
Solution:
(a) Separate the variables: ———l—dP =0.0001 dt
P(5000~ P)
1
Integrate: .[ ————dP = I0.000I dt
P(5000-P)
Decompose integrand into its partial fractions:
P(5000-P) P 5000-P
Hence: 1=R(5000-P)+SP
Substitute P = 0: R= L
5000
Substitute P = 5000: S= L
5000
1 1 1
Hence: —+ = [0.0001 ar
5000° P 5000—-P

5000 P
P o 05

in(sgmp | =051+ C

5000—P
P=M &% (5000 - P)
P+ M ™y =5000 M "0

p_ 50004 &>
1+ M %
Divide each term with M %' : P= —@)——
——+1
MeO.St
Hence: P= _;5%__
Ae 9t 41
But P(0) = 500: s00=2000 A9
A+1
Therefore: P= _LO(())_S__
1+ 9¢ "

(b) Limiting value for P is 5000. P(20) =~ 4998.
Hence, maximum size is reached after about 20 years.

© O.T.Lee 224



16 First Order Differential Equations

Example 16.8

In a chemical reaction, the concentration C of a chemical in a solution is modelled by the

equation il—c =0.2C (1 —%) where ¢ is time in minutes. The initial concentration of the
t

chemical is 0.01 g/L.

(a) Use the variables separable method to show that C =

for constants 4, B and k.

—kt
1+ Be
(b) Hence, determine the time it takes for the concentration to reach half its limiting value.
Solution:
. . dc
(a) Rewrite the equation: Y =0.002C (100 - CO)
Separate & integrate: j—l—— dcC = I 0.002 dt
C(100-C)
Express integrand as partial fractions:
| __ P .4
c(@aoo-¢) 100-C C
Hence: 1=pC+q(100-0C)
= p= 1 and g= 1
P~ 100 77 100
Therefore: L ! +l dC = 10.002 dt
1007 100-C C
~In (1OO_CJ =02t+K
C
100-C _ , o
C
100-C=Cd e ¥
c1+4 e %?y=100
100
¢= 0.2t
1+4e ™
Since C(0) =0.01: A=9999.
Hence: C= ——1—00—67
1+9999¢
(b) Limiting value for C =100 g/L.
100

For C=50 g/L: 50= — oo
149999 V-4

t = 46.1 minutes.
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Exercise 16.3

1. Construct a logistic differential equation % for each of the following scenarios:

Growth Rate ~ Limiting Value

(a) 0.2 1000
(b) 0.1 500

() 0.5 10 000
(d) 0.25 5 000

2. For each of the following logistic differential equation, state the growth rate and the
limiting value for the variable. Hence, state the solution to the differential equation

in the form of a logistic function.

dpP

(a) =~ =0.002P (1000~ P), P(0)=50 (b) 9O _ 6.00050 (100 - 0), O(0) = 20

dt
dac C de 0
— =01C|1-— |, C(0)=5 d —=0.050|1-——1,6(0)=40
© dt ( 50) ©) @) dt ( 1000) ©

3. Use the separation of variables method to solve the following differential equations.

2
(a) %:o.ozy(zoo— ); (0) =100 (b) % =P—0.01P; P(0)=10
dpP P dx
L =02P[1-2|; (0)=40 d) E=-0.5%(0.01x - 1); x(0)=20
(©) 7 ( 50) m(0) (d) = x(0.01x— 1) ; x(0)

4. The population P of a colony of marsupials at a remote island at time ¢ years is modelled
by the differential equation CCIZ—I: =(0.0005P (100 — P). Att=0,P=25.

A

(a) Use the variables separable method to show that P = ——
1+ Be™
stating the values of 4, B and k.

(b) Determine the time it takes for the population to reach half its limiting value.

5. The population P of a colony of rabbits at time ¢ months is modelled by the differential
equation ap =0.08P 1——P— . Atr=0, P=200.
dt 20000

A

(a) Use the variables separable method to show that P= ————
1+Be™™
stating the values of 4, B and k.

(b) Determine the time it takes for the population to effectively reach its limiting value.

6. The number of people infected by a strain of influenza is modelled by

2
d—]t) = 10P — 0.005P where ¢ is time in months after the detection of the virus strain

among 10 influenza patients. Use the variables separable method to determine the time it
takes for the infection to reach 80% of its limiting value.
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10.

11.

12.

13.

In a chemical reaction, the concentration C of a chemical in a solution is modelled by the

equation % =0.02C (1 _5§6) where 7 is time in minutes. The initial concentration of

the chemical is 8 g/L.. Determine the time it takes for the concentration to effectively
reach its limiting value.

A certain school has a student population of 1 200 students. The spread of a rumour

among the student population started by a single student may be modelled by

2
%Ii =960P — 0.8P where P(n) represents the number of students who have already
n

heard the rumour by the day n. Determine the time it takes for the rumour to spread to
90% of the student population.

The number of particles trapped by an air-filtering system is modelled by the equation

2
id]t! =—0.75N + 75 000N where N(f) represents the number of particles trapped after ¢

hours. The air-filtering system requires a filter-change when it reaches 90% of its
filtering capacity. Initially, there were 10 particles trapped. Assuming that the rate of
filtering remains unchanged, determine how often the filters need to be changed.

A fast food company intends to capture the custom of 70% of a suburb of 10 000 families
within the first week of its opening. The number of families who have frequented the

2
store # days after its opening N(¢) is modelled by N'(#) =—0.6N + 6000N. Determine if
the company can achieve this goal.

Consider the logistic differential equation % =kP (1 - ﬁ)%) with P(0) = 100.

Find the value of &k if P is to achieve half its limiting value when ¢ = 20.

The concentration of a salt in a solution is modelled by id? =kC(1- L) where

C(¢) is the concentration of the salt at time ¢ minutes. Given that C(0) = 10g/L, find & if
the salt concentration is to reach 75% of its maximum concentration after 50 minutes.

Use differentiation to find le_P in the form 4P (1 — %) where k and 4 are constants if
t

1000

P=———__.
1+99e"0'1t

*14. Use the variables separable method to find the general solution to

%=2(y+1)(y+2), y(0)=1.
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16.3 First Oder Differential Equations of the form dy = f(x)g(»)

e The separation of variables method is used to solve differential equations of

this form.
Example 16.9
. . . . . dy 1+2y
Use the method of separation of variables to solve the differential equation — = Tiy
+x
given that y(0) = 10.
Solution:
Separate the variables: L ly = L dx
1+2y I+x
1 1
Integrate: dy = || — |dx
g I[l+2yj 7 J(l+xj
%Zn (1+2y) =ln(1+x) + Ink (where In k is a constant)
I
In(1+2y)? = In[k(1+x)]
1
Hence: (1+2y)? =k(1+x)
1.2 2
y= E[k (1+x) —1]
2
Since y(0) = 10, k=21
1 2
Therefore: =—[21(1+x) -1 =
Y73 21 +x) =] dSolvec =222, ur, y, =0, y=10)
21x? 21.xZ
y= +21x+ 10 W= > +21-x+18
Exercise 16.4
1. Use the method of separation of variables to find the general solution to:
(a) xﬂ=1+x2 b) (x- 1)——1+y (c) 4 l—y2 (d) fi-)i+ysinx =0
dx a- 2 ) dx dx
2. Use the method of separation of variables to find the particular solution to:
dy _ « 2.y
a) 2y—=¢e",y(0)=2 b) (I+x°)—=2x,y(-1)=0
(2) ydx (0) ()(x)dx x,y(=1)
@ Ll 0=1 @ xZ@enoen=0,501)=2
d& @r)o+) dx 4 7

() y(l+x )—=x(1+y2),y(l)=l ) ysinzxg')—;+—l—=0,y(7t/2)=0
dx dx tanx
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16.4 Slope/Direction Fields of First Order Differential Equations

¢ Slope fields or direction fields convey how the curves of general solutions to
differential equations may look like without actually solving the differential
equations.
 In many cases, by applying special mathematical techniques on relevant
portions of a slope field, particular solutions may be found.

: : . . d
o Consider the differential equation D=y X i B A
dx v ~4 s s s f o
. . AT ~T - L
e The accompanying diagram shows the O N A A
associated slope field. A A S
 The shape of the slope field is vy ST
” gy s . . Vs \ SV A ]
parabolic” in form, consistent with the sy e
x2 \_‘\4\\\\\.--/1111?1
general solutiony = — + C. vavass~d ot
2 SN NN NN~
e A particular solution with initial VANANNNNSRE s s s st
.o . . Vo ~ -+ P S
condition x =1, y =1 is also shown. . : : : : _1_ : : : : L,
A O T VA Y S
e Consider the differential equation
2 L T | LR T T T |
iy_ =_x [ (SR SRS
dx ) LR VOV oL L
o The accompanying diagram shows the : : : : : : : :
associated slope field. S SR
 The shape of the slope field is “cubic” P Y P
in form, consistent with the general NN N
x3 T T S N N L S
solution y=—-— + C. N SN
3 T N L N Voo
o A particular solution with initial A s SR S :
L. . [ S T T U G NP U O U U L Y
condition x = 1, y =1 is also shown. Pt FPURN W
e Consider the differential equation
J NNN S~ | s s
_')i = i . Y N N e ~— /4
dx Y AN NN~ - Vi
o The accompanying diagram shows the : : t : : o7 S ’; ‘;
associated slope field. VLY N NN,
 Three particular solutions are shown IR IR TR T IR
with initial conditions (1, 2), (1, -2) and i ; :"b" f }\1 f :: 1 :
(4, 1) respectively. Y, N NP
TN A4 i N S U VY
IV A — e N R NN
VA A A e T WY
A i e TS N W
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16.4.1 Drawing slope fields

¢ In this section, we will examine how slope fields are drawn.

o Consider the differential equation

dy _ x

y
o The RHS of the differential equation indicates that the gradients of

the curves representing the general solutions at any point (x, y) is X,
Y

o The table below shows the gradients at (x, y) for integer values of x and y
for-2<x<2,-2<y<2.

y X -2 -1 0] 1 2
-2 1 0.5 0 -0.5 1
-1 2 1 0] -1 -2
0 — - © indeterminate —> o0 — 0
1 -2 -1 0 1 2
2 -1 -0.5 o] 0.5 1

Mark each of the points with a short line with the stated gradient.

« For example, at the point (-2, —2), mark this point with a

short line (dash) with gradient 1.

The gradients at (-2, 0), (-1, 0), (1, 0) and (2, 0) tend to infinity.
Hence, mark these points with vertical dashes.
The gradients at (0, -2), (0, —1), (0, 1) and (0, 2) are zero.
Hence, mark these points with horizontal dashes.
The gradient at the point (0, 0) is indeterminate. Leave this point unmarked.
The diagram below includes points midway between the points listed above.

Clearly, drawing a slope field by hand is an extremely tedious process.

CAS calculators provide a convenient and efficient means of “drawing” slope
fields. Using a slope field we can make intelligent guesses about the form of the
solution to a differential equation without actually solving it.
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Example 16.10

On your CAS calculator generate the slope field for % =y.

Generate the curve representing the particular solution with initial condition (2, 2).
Solution:

The process described below is for the Casio ClassPad.

1 | Activate the DiffEq Graph Wizard.

Input the differential equation.

2 | o Inthe DiffEq tab, enter y into the active box. DiffEq | _IC__ | Graphs]

Y=y lﬁ

Input initial Condition.

e In the IC tab, under the “Initial Condition 1” box, | ([DiffEa] IC [Graphs]

_ _ Initizl Condition 1
3 enter x=2 and y = 2. xi=2 '

o Check the box. vi=2

Initial Condition 2

To display slope field.
e Tap the slope-field icon.

e To change the view of the slope field,
use the “view-window” and the “zoom” icons.

4
NG SN PN T
VALV LV VAN VY
A U U U U O O W U R SO
(IR AR TR SR IO
(SRR R RS R R N RO
(R R U I R S S N I TR R OO
The screen above was obtained as follows: ; 3
e Tap the “Resize” icon and the menu bar. ; TSR]
e Tap the “view-window icon. ! {amin  [F7 !
/ |max 77 /
o Tap the “Default” box. P B = /
¢ Select “Line” in the drop-down “Field” box. + |ria ’
5 | o Leave “Steps” as 12. R R i
The domain and range is divided into 12 intervals ||~ =
each, giving 12 x 12 = 144 “dashes”. : :
e Tap the “OK” box. : S ) | e | :
e Tap the “Zoom” icon and select “Square” from VAV LY \!\ Vv

the drop-down menu.
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Example 16.11

On the slope field given, draw in the curve
representing the particular solution with initial
condition:

(@ (1,1 (b)) (2,-D.

Solution:

(a) To draw the required curve.

e Locate the point (1, 1).

e Note the direction of the “dash” at
this point.

¢ Following the “flow” of this dash,
trace a curve that is “parallel” to the
other dashes.

e It is important to note that the required
curve is not obtained by joining the
dashes.

(b) To draw the required curve.

e Locate the point (-2, —1).

¢ Note the direction of the “dash” at
this point.

¢ Following the “flow” of this dash,
trace a curve that is “parallel” to the
other dashes.

¢ The curve may pass through other
dashes but mostly it passes in between
the dashes.

~

[ 117787111 1]
[ [/ /77 /////5
{11/ 7%/ ] ]|
Wz
i
_!lf‘///.'/y/////flfl
/F;//i///-l%/}/{;;‘
L1/ 772471 11|
Yy
//////37‘////[’
y
[ [/ /A% ] /[!
f/////’/////;
L]/ 7%/ 1] ||
/7757 01T T
[ | ]/ /A% $—~—1t.1]
ByzZymn
SRV AR
T
[ 1/ 7275/ 1111
Y ////f;
//////374////1
st ¥4
7
[ /7227 ] ] ]
ez
Wzl
A ’_'/1,/ //5{7111X
T
[/ JSoX/ T
a2t
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Example 16.12

On the slope field given, draw in the integral curve
with initial condition:

@ 2,00 () (-2.-2).

Solution:

(a) ¢ Note that the point (0, 0) has
indeterminate gradient.
¢ The curve passing through (2, 0) is
actually a line.
¢ This line does not pass through the
“other side” of a point with
indeterminate gradient.

(b) & The curve that passes through (-2, —2)

passes through a point with a vertical

dash.

¢ This point has infinite gradient.

e The curve does not pass through the
“other side” of a point with infinite

gradient.

Note:

y

NN NN NSNS e e e S S
NN NN NSNS e e s
NN N NSNS — e s S
NN N\ NN Nh—emem e s S S
AN AN NNN R e s S
AN NMAANANSNSN Y e
VANNN NN )~ S/
BRI A/
T Uk T 7 ]
1BV VAN IN 2 4
Lttt Of |
I N A VNN \
VY e NANAN \
I A AL s NN \
[ /7777 A~ NN\
VNN PID St AN NN
VNP P e NN NN
y

NONCN N NN S e —

NN NN NSNS s S

NN NN NN N B e s S S

NN NN NN e s s

NN AN h e s s

ANNANAANANANN N s S S

AN N ANk~ S/

BRI A/

T L & ¢ h U K 1 7 A 7 A

BUBURVANVINE/IN T ¢4

IR & ii%V‘l

PLL T EET L 7—N\ Mz0)

[ 177 A —~NN VD

[ 1177777 ——~~N\\\

1/ /7SS A==\

/S S SIS s N N\

VPP et SN NN

y

NN NN N g e e e e S

AN R

ANAN e

AN e e S S S

N\ e e S

AN b S S

A\ ke S S

1 NAAAAAR

LAY T A LA

4\ NS EERE

[ SRR N I B

I /Z—=N\V VLY

! co—~N NN

[/ ——=~~N N\

// €~~~ NN N\

// N RN

/ 7/ et NN

e Curves representing particular solutions do not pass through to the other side of points

with either infinite or indeterminate gradients.
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*

Example 16.13
For the given slope field, which of the following y
equations best describe the associated differential STibbb b e
equation. Give reasons for your answer. R RN R R R R R R RN RN R R
A y'=y»y-2) B.y=y C y=yr+2) N R NN
Dy =y2=y). 100000000000000000007
Solution: N T SRS A
o RN SN
From the slope field, gradient is 0 for y = 0 and PRrrrriiiiieen
y=2. Hence, B and C can be ruled out. IR R R AR R R R R
The gradient is negative for y > 2, hence it can only SRR RN AR RN
be D. sebi b
Example 16.14
Suggest with reasons a (a) (b)
general differential 4 !
equation that corresponds { 5 ; ;?; {?4 14 ; 5 % } ; ; 4 } ?
to the given slope field. N YA [ 4] ]
VLTl 77077 10 A
[ r74%77 01 ] A N
LI 774077 001 [LL 0787770171
AT A A A A A A
V2L /70770 %] [ 1717 /F7/77F]]
VL7 7477101 L7377 1]
Vil /7577111 L1171
!/////27‘/////} JEY A
!;//// ////l; R
Solution: Librr7xs7100 N

(a) The slopes are all positive.
Hence, y' consists of even powers of x and even powers of y add a positive constant.
But the slopes for any particular value of x are the same and hence not dependent on
the y-values. Therefore, we can rule out all the powers of y.
From the steepness of the dashes, it can be deduced that the highest even power
could possibly be not more than 2.

2
Therefore, y' =ax + b, where a and b are positive constants.

(b) The slopes are all positive.
Hence, »' consists of even powers of x and even powers of y add a positive constant.

For any particular value of x, the slopes get steeper as the y-values increase.
Hence, 3’ depends on both x and y values.
The slopes along the x-axis are the same as those along the y-axis.

2

2n 2m 2n m
Hence, it cannotbe y' =ax +by +c. Itmustbe ofthe form y' =kx xy +ec.

22
From the steepness of the dashes, y' =kx y + ¢, where k and c are positive constants.
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16.4.2 Isoclines

e Isoclines are curves that trace the points on a slope field that share the same

gradient.
e The accompanying diagram is the slope field y
for the equation y' = y(2 — y) as was seen in sl

Example 16.13.

o All the dashes on the line y =4 I
have the same gradient. Hence, )
y =4 is an isocline. 1

« In fact, as long as the gradients are x
not infinite or indeterminate,

y = k for constant k are isoclines.
e Hence, the gradient of the curve
does not depend on the x-values.
o This implies that there is no x term
on the RHS of the differential equation.

—————e e S NN | e
et e o et e e e NN\ e e e
e s | NSNS e
R RN
e NN S e
RS SR [
S BN -
I D N
e oo e S NN\ S —
———— e AP e\ NN | S
————— e e~ NN\ S —
—— e e S NN N S e
———— e e~ S NN\
O N B
I BN [
———— e~ S NN N |
et s e NN\ S e
—— e~ 2NN N | S e
e [ NNN | e

e A ANNN ] S e

'
wn
}
T

e Hence, if the isoclines of finite gradients consist only of horizontal lines, then the
RHS of the differential equation does not contain any x-terms.

e Similarly, if the isoclines of finite gradients consist only of vertical lines, then the
RHS of the differential equation does not contain any y-terms (Example 16.14a).

Example 16.15
The accompanying diagram shows the slope field for Y
x+1 . . . N S 4
y' = =—. State the equation of the isocline of NN~k S S S
y NNNN~—~—BA S S S S
) L. . NN\NN~~—ck s S S
gradient 0.5 and sketch this isocline on the slope field. NNNNS~——2/ S/ /) /] ]
AN
i NN ~—aF
Solution: R VAN NS
. x I e e ey o e e e e
Gradientis 0.5 = —— =0.5 RS AR
’ P NI
PN NN
Hence, y=2(x + 1) wherex#—-1ny #0. Pt ENENANENENENRNRN
VDTt &GN NN NN
SIS SN NN NN NN
Y SN NN AN NN
;;;; Pt & N N N N N NN
i
N
i
/hd
A
L
4 x
R
Vi
AT
AR
AT
NN
Yy A SN NN NN NN
VP s & N NS R NN
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Exercise 16.5

1. On the slope field given, draw in the curve y
representing the particular solution with initial [ ]/ —kN—/ /| |
condition: ; ; ;?—§> i“;; ; ;
@ LD O 2D VAN NEARE
In each case state the coordinates of the minimum [ ] ] /—x~—// ]|
point and estimate the coordinates of the 4 /1 /4 /=N KN/ 4 4 {
y-intercept. % l/ -;1/_-'1_\ \_L//}, I/ %
L] /= N—/ [ | |
[ 1L /—=\~—/1 1]
[ [ ] /—xN—/ ] [ |
[ /= NN—/ /] ]
[ | ] /—sx~N—// ]|
2. The accompanying diagram shows the y
slope field of a differential equation. e N NN R
. K NN ON N N N N N N N NN
(a) On the slope field given, draw in the I >>>>x>xz>z>
curve representing the particular ®ITC- -z Iz
solution with initial condition: wli 2 2 2222222 2 2 <
(@) (15,10) (b) (20,-10). 1--Z-Zc-C--- ¢
In each case, estimate the value of N S
»(10). B N NNINIENENENENENENENIN
(b) State the equation of the isocline with NN NN N RN NN
: A T . S Y A WO Y W W U
zero gradient. Sk SN S S S N S S S
NS S S S N S R S WS SR S
A S S S S SR S SUS SN S S
B L T | AR A U U T
3. The accompanying diagram shows the y
slope field of a differential equation. VAN NNk~ sy
(a) On the slope field given, draw in the § § s § Q Q N SINSITTZ S0 j j
integral curve with initial condition: } } ‘\\ } } § } § :t\-—/;; ; 7 7 7 7
. .. + ~—
® 2,-1) (@) (-1,-1). LUV VYV ENNN= 77 11 ]
In each case, estimate the value of } } } } } } /' }1"} }L_O_i{ { { { { { {
x when y = 0, where it exists. i;i;i;i; /:.; f j;\\:t\\\;\\\é
(b) State the equation of the isocline with T Ak //f\\\\\ N
gradient one. ; f f ; ; ;;;,<i::::::§§§§ Q
VNP IS S N NN N
S S S S S B SO N
LSS S S S SONN N N
N A s . B N NN

4. For the slope field given in Question 3, which of the following equations best describe
the associated differential equation. Give reasons for your answer.
2 — - -
A.y'=x+ B.y':Z——Z C.y'=2 ad D. y ad 2.
y-1 x—1 -y y+1

For the equation you have chosen, state the equation of the isocline with gradient —2.
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—
AN TR TR T TN
N N N
NN

>

G S N G
N NN
e N N
NN

5. The accompanying diagram shows the slope field
of a differential equation.

(1, 1).

(a) Sketch the integral curve with initial condition
(b) Determine with reasons, which of the

following equations best describe the
differential equation.

Ay

2x+1
y—1.

B.
D. y

x+1
y+l

C. y
(c) For the equation you have chosen, state the

Y S S
YOl
<
v T
T S

equation of the isocline with gradient 1/2.
Draw this isocline on the diagram given.

6. The accompanying diagram shows the slope field of

b3
//// \MN?\\\\\\
~SNN S A
//// \MNY\\\\\\
SOSNN\ NS
~SNN\ | S s
~ N\ Vi
MR A At
//// \\N“\\\\\\
~aNN\ | A
~~N\\\{ /A
SN\ | A

condition (1, —1) crosses the y-axis

(a) Estimate where the integral curve with initial
(b) Determine with reasons, which of the

a differential equation.

following equations best describe the

differential equation.

L

e

—

=

Q

=

0]

-~

w2

— = g

+ 12

= R o
e
- - o
el
R = R
mA 28
%5

=
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—
~ | §E
N > o B
o 9 g
- -~ L g
==
(&}
. . 80
< O L 2

~~

Q

N’

7. Suggest with reasons a differential equation that corresponds to the given slope fields.

(©)

(b)

(a)

4

y

x

e NN~ S S
et R NANNNSN A S S S
AR B AANNNNSper s/ /)
T N Y ,, / / / //\,-\\\ \ \ {
NONNOUNORONUNN NN, ﬁ_____‘_wvnmh
AAVALVVA TRV i NN

U S DU OO VD SO JON N NOUUR SOV VD S Ll e SN LAY
DA R A S B ““lﬁ%- \\J.ﬂ SRIIRIRY
RRRRRN RRRRAR O NN S\
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B e e S VA PPt St N N NN
B VAP P S NN NN
e e il e S i e e S ONONON
e e e N
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T
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e
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P g
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17 Rectilinear Motion

17.1 Displacement, Velocity and Acceleration

o This section reviews and extends the concepts of rectilinear motion introduced in
Mathematics Methods Units 1, 2, 3 & 4.

e Consider a particle P travelling in a straight line (undergoing rectilinear motion)
starting from a fixed point O.

o Let x(¢) denote the displacement of P from O at any time ¢.
Let v(¢) and a(7) respectively denote the velocity and acceleration of P at any time #.

e The distance between P and O at any time ¢ is given by |x(t) .

b
e The change in displacement between t =g and = b is J.v dr .

a

b
o The distance travelled by P in the interval a < ¢ < b is “ v[ dr .

a

o The velocity of P is v(f) = ? whereas its speed is | % .
t

2
e The acceleration of P is a(?) = v _ Q
dt g
dv dv dv  dx
o Applying the chainruleon —: — = — x —
PPyime dt dt  dx dt
dv
= v —
dx
4]
dx
dv  d*x
e Hence: aty= — = —
dt qgr?
1 2
w_ ")
dx dx
e The relationship between displacement, velocity and acceleration is described
schematically below:
differentiate differentiate
Displacement —~ Velocity — Acceleration
integrate integrate
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Example 17.1
A particle travels in a straight line such that its velocity at time # (seconds) is given by

v= 3t2 -4 (ms 1). The particle starts from rest from the origin O.
(a) Find acceleration of the particle when it is next at O.

(b) Find the change in displacement between ¢ = 0 and 7 = 3 seconds.
(c) Find the distance travelled in the first 3 seconds.

Solution:
3
(a) Displacement x = j312 —4d =t -4+C

3
x(0)=0 = C=0 = x=t -4
3
When the particle is at O: x=0 = ¢t -4=0
t=0and 2 (rejectt=-2)
Hence, the particle is next at O when 7 = 2 seconds.

)
a= % =6¢. Hence,a(2)=12ms .

3
(b) Change in displacement = _[ 32— 4dt =15m.
0

3
(c) Distance travelled = I l3t2 - 4’ dt =21.16 m.
0

Example 17.2

The acceleration of a body moving in a straight line at time ¢ seconds is given by a = 47 + 1.

Find x, the displacement of the particle from a fixed point O at time ¢ given that the particle
-1

starts from O with a velocity of 5 ms

Solution:
. dx
Integrate with respect to ¢: = = '[4t +1 dt
=22 +1+C
., dx
When ¢ = 0, velocity = =5 = C=5.
Hence: & Ith +t+5dt
dt
. 28 7
Integrate with respect to # x= 3 +—2— +5t+K
When¢=0,x=0 = K=0
£
Hence: X=—+—+5t¢
3 2
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Example 17.3

A particle P moves along a straight line. Its displacement (metres) from the fixed point O is
given by x(7) where ¢ is time in seconds. The acceleration a of the particle is given by

2
a(t) =9 — 4v where w(¢) is the velocity of the particle. Also, x(0) =v(0)=0and v(¥)>0 V1.
(a) Find v in terms of x. Hence, determine the limiting value for v.
(b) Find v in terms of z. Hence, describe the motion of P.

Solution:
. v v
a) Sincea(t)=v —, yv—=9-— 4v
(a) ® T ”
Separate the variables: 3 dv=dx
9- 4v
Integrate: I dv = I 1 dx
9—4v?

2
~§ln(9—4v)=x+C

2
In(®-4v)=-8x+K

2
9—4y =Ae ¥
Initial Condition x =0, v=0: A=9
2
Hence: 4y =9 -9 8%
v= % - asy@H>0 v

-1
Asx — oo, v—> % . Hence, limiting value of v is% ms

2 dv
b) a(f)=9-4v, —=9- 4v
(b) a(®) 7
Separate the variables: ! 3 dv=dt
9—-4vy
1
Integrate: dv = |1dt
J. 9—4y? I
Decompose integrand into its partial fractions:
1 1 _ 4 N B
9—4y2  (B3-2v)(3+2v) 3-2v 3+2v
Hence: 1=AGB+2v)+ B3 -2v)
4=B=1
6
Therefore: —J- dv = jl dt
3- 2v 3+2v
1 " 3-2v| _ ‘tC
12 3+2v
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(b) Initial Condition =0, v=0: C=0
Hence: 3-2v = ¢ 12
' 3+2v
As0§v<i: 3_2‘)=e_12t
2 34+2v
V= Dy
2(1+e )

Therefore, as ¢t — o, P moves further and further away from O
-1
travelling at a constant speed of 3 ms .

Example 17.4

A particle P moves along a straight line. Its displacement (metres) from the fixed point O is
given by x(#) where ¢ is time in seconds. The acceleration a of the particle is given by
a(t)=2 —4x. Also, x(0)=v(0)=0and v(£)>0 V.

(a) Find v in terms of x.

(b) Hence, determine the range of values for x and v.

Solution:
dv dv
a) Since a(f)=v —, Vv — =2 —4x
(a) ® = ~
Separate the variables and integrate: Iv dv = _[2—4x dx
2 2
Yo—ox-2x +C
22

Since x(0)=v(0)=0, = K=0.

Hence v=24 x-x* since =0 V.

2
Alternative Solution to obtain v

oz’(lv2
2

Use a(t)——d—(—i%}z—). ———)=2—4x

Separate the variables and integrate: f 1d (%vz) = f 2—-4x dx

v2

2
— =2x-2x +C.
2
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2
(b) Clearly x—x >0. = x(1-x)>0
= 0<x<1 metres

Clearly, minimum value for v is 0.

) 2 1 )
Maximum for —x +xoccursatx = 5 . = Maximum value forv=1.

-1
= 0<v<1ms .

Exercise 17.1

1. The displacement, s (m), of a particle P moving in a straight line, at time # seconds, from
a fixed point O, is given by: s=-2+ 1.5 In(¢+3),forz>0. Find:
(a) the initial displacement of P (b) when the particle is at O
(c) the displacement of P at # = 40 seconds
(d) the distance travelled in the first 40 seconds.

2. Particle P travels in a straight line such that its displacement x (metres) from a fixed

t
point O, ¢ seconds after passing O, is given by x = e sin(f). For 0 <7< 7, calculate:
(a) when P is instantaneously at rest and its acceleration at this instant
(b) the maximum velocity for P (in the positive direction).

3. A particle moves along the x-axis, and after ¢ seconds, its position from the origin O is
given by x =5 + 3 cos (2f) + 4sin (2¢).
(a) Calculate when the body is momentarily at rest.
(b) Prove that the acceleration of the particle is given by a =20 — 4x.

4. Particle P travels along the x-axis such that at time # (¢ > 0) seconds, its displacement

x metres from O is given by x = 16( e l—e ). Find:
(a) the acceleration of P when P is farthest from O
(b) the maximum speed of P on its return journey to O.

5. A particle P travels along the x-axis in the time interval 0 <¢< 7. Its displacement x
from the origin O, ¢ seconds later is given by x = ¢ + sin (2).
(a) Calculate the value of 7 during which P first changes its direction of motion.
(b) Show that P is always on the same side of O.
(c) Find when the acceleration of P is zero.

6. The velocity of a particle P experiencing rectilinear motion is given by v=1¢ (¢t — 2) ms 1.
(a) Calculate the velocity of P when ¢ = 4 seconds
(b) Determine the net change in displacement in P in the first four seconds
(c) Calculate the average speed of P during the first four seconds.
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10.

11.

12.

13.

14.

. The velocity of a particle P experiencing rectilinear motion is given by v = wsin (nf) ms

(a) Find the velocity of P when 7 = 2 seconds.
(b) Calculate the time it takes P to travel the first 2 metres.

-1
. The velocity vems  of particle P is related to its displacement x cm from a fixed point O

by the equation v=2x + 4. It is known that P starts off from O andx>0 V¢>0.
(a) Determine x in terms of time ¢.
(b) Determine its acceleration a in terms of time ¢.

-1
The velocity vms  of particle P is related to its displacement x m from a fixed point O
3

by the equation v=x — 8. It is known that P starts off from O.
(a) Determine its acceleration a whenx=1m
(b) Determine its displacement when its acceleration is 0.

The acceleration of a particle P undergoing rectilinear motion is given by a =2¢ — 3 ms

The initial velocity of P is O ms . Calculate:
(a) the velocity of P when ¢ = 4 seconds
(b) the acceleration at the instance P completes the first 4 metres.

The acceleration of a particle P undergoing rectilinear motion is given by

2 -1
a=—4x sin (2n/) ms . The initial velocity of P is 2nms . Calculate:
(a) the velocity of P when ¢ = 1.5 seconds
(b) when P has travelled the first 2 metres.

The acceleration of a particle P undergoing rectilinear motion is given by

-2 -1
a= 1+4t ms . The initial velocity of P is 1/6 ms . Calculate:

(a) the velocity of P when ¢ = 2 seconds
(b) the net change in displacement in P in the first two seconds.

-1
A particle P moves along a straight line. Its velocity v(f) ms at time ¢ seconds satisfies
the equation % =4 —v. Given that v(0) = 0 and v(f) > 0 V ¢, determine:
(a) v(¢) in terms of ¢ (b) the limiting velocity of P.
A particle P starts from rest from the origin and travels along the negative y-axis. Its
-1
velocity v(f) ms  at time ¢ seconds satisfies the equation % =10 - 2v. Find:

(a) v(¢) in terms of ¢ (b) the limiting velocity of P.
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15.

16.

17.

18.

19.

20.

21.

22.

The velocity v of a body undergoing free fall at time # is given by % = g —kv where

g and k are positive real constants.
(a) Find v in terms of # given that the body falls from rest.
(b) Find the terminal velocity of the object (the velocity as ¢ — o).

A particle P starts from rest from the origin O and moves along the positive x-axis. Its
displacement (metres) from O is given by x(f) where ¢ is time in seconds. The

2
acceleration a of the particle is given by a(#) = 25 — 16v where v(?) is the velocity of the
particle. Find v in terms of x. Hence, determine the limiting value for v.

A particle P starts from rest from the origin O and moves along the positive y-axis. Its
displacement (metres) from O is given by y(¢) where ¢ is time in seconds. The

2
acceleration a of the particle is given by a(f) = 100 — 25v where v(7) is the velocity of the
particle. Find an expression for v in terms of z. Hence, describe the motion of P.

The acceleration a of a particle at time ¢ is given by a = g(1 —k2v2) where v is the

velocity of the particle and g and & are positive real constants. Find v in terms of x given
thatx=0, v=0.

A particle P moves along a straight line. Its displacement (metres) from the fixed point O
is given by x(¢) where ¢ is time in seconds. The acceleration a of the particle is given by
a(®)=-9x. Also,x=0,v=4.

(a) Find v in terms of x.

(b) Determine the range of values for x and v.

A particle P moves along a straight line. Its displacement (metres) from the fixed point O
is given by x(¢) where ¢ is time in seconds. The acceleration a of the particle is given by
a(f)=8 —4x. Also,x(0)=wv(0)=0and v(£)>0 V>0.

(a) Find v in terms of x.

(b) Hence, determine the range of values for x and v.

-1
The acceleration (ms ) of a particle at time ¢ is related to its displacement x at time ¢

-1
by a= ——82—. The particle starts with velocity I ms when x =16 m.
X

(a) Determine the algebraic relation between its velocity and displacement.
(b) Determine the algebraic relation between its displacement and time.

-1
The acceleration (ms ) of a particle at time ¢ is related to its displacement x at time ¢
2 -1
by a=8x(x +1). When¢=0,x=0, its velocity v=-2ms .

(a) Determine the algebraic relation between its velocity and displacement.
(b) Determine the algebraic relation between its displacement and time.
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2 2
17.2 The Second Order Differential Equation d—; =—-@® X
dt

¢ In this section, we will examine the properties of variables that satisfy the
2
) . . X 2 .
second order differential equation — 0 x where o is a constant. The
dt
solution to this differential equation is established in the example below.

Example 17.5
. . d’x 2 .
The variable x(¢), satisfies the — T0x where o is a constant.
dat
. dx 2 2.2 2 .
(a) Prove thatifv= = thenv = (4 —x ) where 4 is a constant.

(b) Hence, find the general solution to the differential equation.

Solution:
2 2
(a) Sinced—;=vﬂ: vﬂ=—mx
dt dx
Separate the variables and integrate: jv dv = —mzjx dx
2 2 2
Y _ 87 ie%C
2
2 22 22
Hence: v=—0x to 4

2 22 2
> v=0@l —-x)

(b) Clearly v==++/ 02 A% —@?x? . = % =14 02 4% — @ x?
Separate the variables and integrate: I——l— dx =+ J-l dt
\ o2 4% - 0’x?

! x Acos0 dGZijl dt
2 42 _ 24> sin29

Substitute x = 4 sin 6: '[
Jo

1 —
-(;jwe—ijldt

0=+ (wt+a) where ais aconstant
Hence: x = A sin (w0t + a)]
As sin (£p) =+ sin (B): x =% A sin (0f + ).

Note:
e [fin part (b), the substitution was x = A cos 6,
then the general solution would be x =+ 4 cos (wt + a).
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2 2

17.2.1 Properties of variables satisfying ax_ -0 X

dt*

2 2

. ) d
e Consider the variable x such that ax_ - X.

dr?

o The general solution is of the form x = + 4 sin (of + &) or x =+ 4 cos (wf + o).

e C(learly the general solution x is a sinusoidal function.

+ Hence: —|A|SxS|A|

That is, the values of the variable x varies between x = — |A l and x = |A | .

o The variation of the values of x has amplitude |4].

e The values of x changes sinusoidally with period T'= 2n
®

17.2.2 Simple Harmonic Motion

e If x represents the displacement of a particle P from a fixed point O

d*x

and — =0 X, then P is said to experience simple harmonic motion.

dt

o Its acceleration is proportional to its displacement from the fixed point O
(mean position) and acts towards the mean position.
o Its displacement x == A4 sin (¢ + o) or x =+ 4 cos (o7 + o).
o If P starts from the mean position, thatis =0, x =0,
then the motion is best modelled by x =+ 4 sin (7).
o If P starts from an extreme position, thatis =0, x =+ 4,
then the motion is best modelled by x =+ 4 cos (w?).
« If P starts from a point which is neither the mean position nor an
extreme position then, the motion is best modelled by
either x =+ 4 sin (of + &) or x =+ 4 cos (ot + o).
» P moves along a straight line between x = — |A l and x = |A
thatis —| 4| <x< |4].

b

» The distance travelled in one cycle = 4 x amplitude = 4 IA | .
o The amplitude of the motion is |A l with period T= Z—R
®

« P is to be found at the same point travelling

. . 2r . .
with the same velocity every — units of time.
®

« The frequency of the motion /' = % -9 cycles per unit time.

2 2 2 2
o Its velocity v in terms of its displacement x is givenby v =o (4 —x ).
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Example 17.6
2

2
The acceleration of a body is given by —; = -97 x, where x (cm) is the displacement of the
dt

body from a fixed point O at time ¢ seconds. The body starts from the point x = 2 with an

initial velocity of 67 cms 1. Determine:

(a) an expression for x in terms of 7.

(b) the amplitude and period of the motion.

(c) the minimum and maximum speed of the body.

(d) the speed of the body as it passes O.

(e) the distance travelled by the body in the first 2 seconds.

Solution:

d%x 2 .
(2) — = -9t x = o=3mn. Hence, x=Asin 3nt+ o)
dt
t=0,x=2 = Asina=2 I
v= 3 =31 A cos 3nt+ a)
dt

v(0)=6nt = 6m=3n4 cosa = Acosa=2 II
Divide I with II tna=1 = a==
Hence: Asin%=2 = A4=212.
Therefore: x= 242 sin (Bmt + %).

(b) Amplitude of motion = 242 cm. Period of motion = ?E = % seconds.
T

_ &
© =%

=3m x 242 cos (Bme + %)
-1
Hence, 0 < IvI §6n\/§ cms .

2 2 2 2 2 2 2
@dv=04-x) >v=91@8-x)

-1
When x = 0: speed lv] = 6nv2 cms .

2
(e) Distance travelled = I dt = 2442 cm.

0

612 cos Bnt+ E)
4

Alternatively, the time interval of 2 seconds covers (% =3 cycles.
;)

Distance covered in 3 cycles =3 x (4 % 22 )= 242 cm.
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Example 17.7

A car is parked at the long-term car park of an airport. The temperature difference 6 OC
between the temperature inside the car and the mean outside temperature of 25 0C, t hours
2 2
after 12 noon, is modelled by the equation d—2 = ~(%) 0. The temperature inside the car
dt

at 9 pm and 3 am are respectively 25 OC and 5 0C.

(a) Show that 6 =4 cos (wf + o), stating the values of 4, ® and o.

(b) State the period and range of the temperature fluctuations.

(c¢) Find the maximum temperature inside the car and state when this first occurs.

(d) Find the length of time in a day when the temperature inside the car is above 40 0C.

Solution:
2 2
@ 42 =—(£] 0 > o=L = 0=dcos(X +a)
de? 12 12 12
At1=9,0=25-25=0 = Acos(3—::—+oc)=0
3n T s
4 2 4
Sn mw
Atr=156=5-25=-20 = Acos(7—2)=—20 = A4=20
Therefore: 0 =20 cos (n_t - E).
12 4
. 27 0
(b) Period = o 24 hours. Range =2 x20=40 C.
%
. Tt T . .
(c) Since, 6 =20 cos (E - Z)’ maximum value for 6 is 20.
Therefore, the maximum temperature is 20 + 25 =45 0C.
This occurs when cos (n_l - E) =1
12 4
= m.T = t=3,1.e.at3 pm.
1 4
25

{ T
d) Graph 0 =20 cos n———.
(d) Grap (12 4)

\ 24
\\\\\\“‘=—f’f/:::::sect

xc=H. 2393585 c=13
pl=20:costn-x/12-n/4), w2=15

Temperature is above 40 0C

= 0is 15 0C above mean.

From graph drawn 6 > 15,

for 0.2394 < ¢t < 5.7606.

That is, for 5.52 hours or 5 hours 31 min.
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Example 17.8

The depth of water level A(f) metres at a jetty is graphed h
against time (¢ hours) and shown in the accompanying S

diagram. The height, y, of the water surface above the mean
2 2
water level satisfies the equation d—; =—n y.
dt
(a) State the depth of the mean water level.
(b) Find an expression for y(f).
Hence, find an expression for A(?) in terms of y(¥).
(c¢) Find the time interval between two consecutive
occasions when the water level is at a depth of 3.5 m.

(d) For 60% of the period, the water level exceeds a metres. Find a.

t>t

Solution:

(a) From the graph shown, depth of mean water level is 3m.

(b) Let y=A4 cos (nt+a)

From the graph, amplitude = 1 = A=1

From the graph, period = 12 hours = 12= 2711 = n= g
t=0,y=1 = l=cosa = a=0
Hence, y =c0S (%t)

= h=3+cos(%t)

(c) When the water level is at a depth of 3.5 metres:
3 + cos (%t) =3.5

{t=2,t=108}

net [~
solue[ 3+cos[ . ]=3. =1 t] |B£r£12 “‘“

Hence t=2, 10 hours
Therefore, the required time interval is 8 hours.

(d) 60% of period = 12 x 0.6 = 7.2 hours. h
That is, the water level is above a m for 7.2 hours. Sy
= The water level is below a m for 4.8 hours.

The curve 4 =3 + cos (%t) is symmetrical h=a

about 1 =6.
Hence, the water level is below a m for
6-24<r<6+24 = 3.6<r<84

4
x84, T

Pt FUDURIISRNSRRY SR P

12

Therefore, a=3+cos(

=2.69098 = 2.69 metres.
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Exercise 17.2

d’x

1. Given that — = —4x, x(0) =0 and x'(0) =20, find x in terms of £.
dt
d*h 2

2. Given that — = —251 h(0) =5 and #'(0) =0, find % in terms of z.
dt
d2

3. Given that —zy = -9, 3(0)=2 and '(0) = 6+/3, find y in terms of 7.
dt

2 2
4. Given that d—ZQ =-16n O, O(0)=-10 and Q'(0) =40~ find Q in terms of ¢.
dt

2
5. The equation of motion of a body is given by % = —4n2x, where x (cm) is the
4
displacement of the body from a fixed point O at time ¢ seconds. The body starts from a
fixed point O and is instantaneously at rest at x =3 cm when ¢ = 0.25 seconds. Find:
(a) an expression for x in terms of ¢ (b) the amplitude and period of the motion
(c) the velocity of the body at time 7= 2 seconds
(d) #when x =1 cm for 0 <7 <0.5 seconds.

2

2
6. The equation of motion of a body is given by d—zx— =—167 x, where x (cm) is the
dt

displacement of the body from a fixed point O at time # seconds. Given that -4 <x <4,
and x =4 when ¢ = 0, find:

(a) an expression for x in terms of 2. (b) the velocity of the body at time ¢ = 4 seconds
(c) the velocity when x = -2 cm.

2
7. The acceleration of a body is given by a’_zx = —x, where x (cm) is the displacement of the
dt
body from a fixed point O at time ¢ seconds. It is instantaneously at rest when ¢ = /6 s
atx =10 cm. Find:
(a) an expression for x in terms of z.
(b) the minimum and maximum speed of the body.

(c) x when the velocity of the body is 5 cms™.

2
8. The equation of motion of body P is d—; = —(g) x. Given that % =0atx=4cm
dt

when ¢ = 0 sec., find:

(a) the maximum speed and when and where the body achieves maximum speed.
(b) the minimum speed and when and where the body achieves minimum speed.
(c) the total distance travelled by P during the time interval 2 < ¢ < 10 seconds.
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9. An object P experiences simple harmonic motion with period 30 seconds and amplitude
2 cm. P starts off from the mean position with a negative velocity.
(a) Determine the maximum speed and magnitude of the maximum acceleration of P.
(b) Determine the position of P when:

-1 2 2
(i) it is travelling at /15 cms (1) its acceleration is (n/15) cms .

10. The mean temperature inside a green house is 15 °C. The temperature difference 0 0C
about this mean temperature, ¢ hours after 12 midnight, is modelled by the equation
%  (n) - o
? = _(Ej 0. The temperature inside the green house at 12 am is 12.5 C.

(a) Given that 6 =5 sin (@ + o), find ® and a.

(b) Find the minimum temperature inside the green house and state when this occurs.

(c) Find the length of time in a day when the temperature inside the green house

exceeds 12.5 0C.

11. The height difference (in metres) between the water surface and the mean water level of 5
metres at a lake is given by % = —({—2—)2 h where ¢ is time in days. The lowest and
highest water level is respectively 4.8 m and 5.2 m. The water level at#=01s 5.1 m.

(a) Given that 2= A cos (of + a), find the values of A, ® and a.

(b) Find % when 4 is increasing at a rate of /100 cm per hour.
(c) The height difference exceeds & m for 7 days. Find £.

12. The amount of a certain chemical within a certain mammal’s body x (mg) is such that

2 2
d—; = (1—3) x. The minimum amount of 0.1 mg is attained at # = 14 days. It is also
dt

known that the maximum amount is 0.5 mg.
(a) Find an expression relating x with ¢.
(b) Find the rate with which the amount of chemical is changing when:
1) t=7 (i) x=0.1 mg.
(¢) The amount of chemical is less than a mg for 80% of the period. Find a.

13. The body temperature T (Celsius), of a certain reptile varies with time. The maximum
temperature of 35 0C is attained at approximately ¢ = 12 hours (midnight is # = 0). The

[}
minimum temperature is 15 C. The temperature difference from the mean temperature

2 2
of the reptile is such that ah —( T j h

dr? 12
(a) Find the rate of change of the difference in the body temperature from the mean
2 2
temperature when (i) 7= 20 OC (i1) dh__[= .
dr? 12

(b) The percentage of time in a cycle when the temperature exceeds 20 °c.
(c) Find the value of k if the temperature exceeds & for 8 hours in a day.
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14. The depth of water level A(f) metres at a jetty is h
graphed against time (¢ hours) and shown in the st
accompanying diagram. The height, y, of the water

RN |
surface above the mean water level, is such that \_/
) 1
ay _ —kzy.
dr*

(a) Find an expression for y(f). Hence, find an
expression for A(f) in terms of y(7).

(b) Find the length of time within a cycle, when the
water level is rising at a rate above 0.1 metre
per hour.

(c) For 4 hours in a cycle, the rate with which the water level rises exceeds a metres per

hour. Determine the value(s) of a.

2

2 -
15. The equation of motion of a body is given by ZI—% =—@ x. Its velocity is 12 cms
dt
-1
and 4 cms  respectively at x = 6 cm and and x = 10 cm.
(a) Find x in terms of 7. (b) Find the magnitude of the greatest acceleration.

16. The displacement x (metres) of a particle P from a fixed point O is given by
x =4 sin (nt) + 3 cos (nf) where ¢ is time in minutes.
(a) Show that the motion of P is simple harmonic in nature.
(b) Find the distance travelled in the first 10 seconds.

17. The displacement (cm) of a particle P moving along the x-axis at time # seconds is given
byx =35+ 12 sin (27f) + 5 cos (2mz).
(a) Show that P undergoes simple harmonic motion stating the mean position.
(b) Find the velocity of P when x = 8 cm.

18. The path traced by a moving particle P has equation x2 + y2 =100. P completes one
revolution every 2 minutes. The position of the particle at time 7 is (x, y).
(a) Show that the x-coordinate of P undergoes a change that is simple harmonic
in nature. State the period and amplitude of this change.
(b) Show that the y-coordinate of P undergoes a change that is simple harmonic
in nature. State the period and amplitude of this change.

19. A circular disc of diameter 10 cm is spinning on a horizontal
axle through its centre. The disc spins at a rate of 1
revolution every 2 seconds. A mark is etched into the edge of
the disc at the point P where the vertical displacement
between P and the axis of the axle is y cm.

(a) Show that the vertical displacement y undergoes a change
that is simple harmonic in nature. State the period and amplitude of this change.

(b) Find y when it is changing at a rate of — © cms
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18 Vector Calculus

18.1 Derivatives and Integrals of Vector Functions

e Consider the vector function #(f) = f(t) i + g(6)j + h(?) k
where f'(?), h(f) and g(¥) are differentiable.

e The derivative of #(¢) with respect to ¢ is defined by:

() = lim {r(t+8t)—r(t)}
5t—0 ot
- lim [f(t+8t)—f(t)}.4r lim {g(t+8t)—g(t)}j+ lim {g(t+8t)—g(t)}k
5t—0 ot S5t—0 ot 3t—0 ot

= f(tyi+ gOj+h )k
e Similarly the second derivative of r(f) is given by:

r'@) = ffOit g'Oj+ KOk
e The indefinite integral of r(¢) with respect to 7 is given by:

[r@) ar = [f@ari+ [g(@ at j+ [ At at k.

o If 7(9), h(¢) and g(¢) are continuous in the interval a < ¢ < b, then:

b b b b
jr(t) dt = jf(z) dt i+ jg(t) dt j+ jh(t) dr k.

a

e Hence, the derivative/integral of a vector function is a vector which is obtained by
differentiating/integrating each of the components separately.
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Example 18.1

Find the first and second derivatives with respect to ¢ for
r=cos (nf) i + sin (nf) j + sin (nf) k.

Solution:

Differentiate with respect to ¢

r' =-msin (nt) i + © cos (nt) j + w cos (nf) k.

2 2 2
r'=—m cos(nf)i—= sin(nf)j—n sin (n) k
;’—t(ans)

= _nz (cos (mtt) i + sin (n?) j + sin (7r) k)

E%[[c.os(nt) sin(n) sin(ne>])

[-sin(t-m)-n cos(tem):nm cos(t-n)-xn]

[—cos(t-n)- n2 —sir(ten)en? -sin(t n)-nz:l

FN

Example 18.2

2
Givenr=2i+2tj—k, find (a) jr(t) dt if 0)=i+k (b) jr(z)dz.
1

Solution:

(2) jr(t)dz=j2dti+j2tdzj—j1dtk

2
=Q2t+a)i+(t +b)j—(t+c)k wherea, b and c are constants.

r0)=i+k: Ir(t)dt=(2t+1)i+z‘2j—(t—1)k.
1
(b) [r@ar =[]y i+ [ﬂ]
0
=2itj—k

Alternative solution to (a)

[r@yadt=[2a i+_|.2tdtj—.|‘1dtk

i]
f[z 2r -1]dr
]

1
f[z 2r -1]dr
]

[2.t £2 -t]

[21-1]

2
=2t i+t j—tk+ C where Cis a constant vector.

2
r0)=i+k: fr(t) dt =2t i+t j—thk+(@+k
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Exercise 18.1

1.

10.

11.

12.

13.

For each of the following vector functions, determine ' and r".

{ -
(@ r=nhi+t+ejt+te k (b) r=sin (2t) i+ cos (2¢)j +tan (20) k
(© r=<1+l,_t_1, _t—i > d) r=< ecosnt’ e—cosnt, esinnt >
tt+l t-

2
Given r=(1-20)i+(t+t)j+5k find r' «r".
Hence, find r when ' and r"are perpendicular.

. Given r=<sin (2/), 2, cos (2¢) >, find # for 0 < ¢ < 2mx when r' and r"are perpendicular.

Given r=2sin (f)i + 3 cos(f) k, find ¢ for 0 <7<27n when r’' and r"are perpendicular.

2
. Given that r = sin (2f) i + cos (2f) j + sin (2f) k show that r"=—n r, where n is a constant.

2
Given thatr=2i+¢j—¢ k, find|r|. Hence, find %lr[

dr

dt

Giventhatr=2¢ti+ (1 +£)j+ t_ll k, find
+

. Giventhatr=2ti—4j+t2 k, find ﬁl—[r.r’] and i[r’.r"].

dt dt

2 2
Ifr=2ti+ (@ —t+1)j+(1-2t)k, find the value of ¢ for which %[r’.r”]=0.

Ifr=2sin(¢)i+ 3 cos (¢)j, find the value of t, 0 < ¢ < 2, for which di[ rer” ]= 0.
t

b
For each r(¢), find I r(t) dt and f r(¢) dt for the indicated values of a and b.
a
(a) n(H)=<0,2cos(f),—3sin(f)> a=0,b=m/2
1 1 1

®b) r=<1+-,1--, — > a=1,b=2
t t 1+t
b b
Find J r(t) dt| and l r(?) I dt for the indicated values of @ and b.
a a
(a) r=<sin (?), 0, cos (¥) > a=0 and b=mn/2

(b) r=<sin (27), — cos(2f),2sin(t)> a=0 and b=n/2

Given that r' =(1 —2£)i+4j+tk, find r given that r(0) =i + .
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14. Given that ' =< —= sin (nf), 1, 27 cos (nf) >, find r given that n(0) =<1, 0, -1 >.

15. Given that r"=<0, 6¢, -2 >, find r given that r'(0)=<0,0,0> and r0)=<-1,0,0>.

2 2 2
16. Given that r"=<r sin (nf), © cos (nf), T sin (nt) >, find » given that '(0)=<-x, 0, 0>
and r(0)=<0,0,0>.

1
2
17. Given that r=8¢i— 6/ j+k, find [rer' dr.
0

18.2 Displacement, Velocity and Acceleration Vectors

e Let the displacement/position vector of a moving body P at time ¢ be r(¢).
Let the corresponding velocity and acceleration vectors be v(¢) and a(r)
respectively.

The velocity vector is v(£) = r'(¢) .
« The speed of P at time ¢ is given by | w(z) |.

The acceleration vector is a(f) = r"(¢) .
« The magnitude of the acceleration at time ¢ is given by | a(t) |

Also, the displacement vector r(f) = I v(?) dt

and the velocity vector v(f) = Ia(t) dt

Between the time =g and t = b:
b

. j v(¢) dt represents the change in displacement

a

b
I v(t) dt

a

b
. I I v(t) | dt represents the distance travelled along the path traced.

a

represents the magnitude of the change of displacement.
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Example 18.3

The velocity of a particle P at time ¢ seconds is given by v(f) = < 2¢, — 2¢, 4> cms 1.
(a) Find the position vector of the particle at any time # given that #(0) =<1, 0, -1 > cm.
(b) Show that the body undergoes constant acceleration.
(c) Find the magnitude of the change in displacement in the first 10 seconds.
(d) Find the distance travelled along the path in the first 10 seconds.
(e) Show that P travels in one direction along a straight line.
State the Cartesian equation of this line.

Solution:

(2)

(b)

(©

(d)

(e)

2 2 2
Integrate with respectto 2 r(f)=<t,—1t,2t >+ C, where Cis a constant vector.
Butn(0)=<1,0,-1> = C=<10,-1>
2 2 2
Therefore =< +1),—-¢t,2t - 1>
Differentiate with respect to #: a(t)=<2,-2,4>.

Since, a(f) is independent of time ¢, the acceleration is constant.

10
Change in displacement = J <2t,-2t,4t > dt
0

10
= [< t2,—12,2t2 >}
0

=< 100, -100, 200 >
Hence, magnitude of change in displacement = |< 100, —-100, 200 > |

=100/6 cm.
10
Distance travelled along path = I [ <2t,-2t,4t > [ dt
0

10
- J6 j 2t dt
]

—=100+/6 cm.

Since, change in displacement = distance travelled along the path,
P must be travelling along a line with no reversal of direction.
2
Parametric equation of path: x=t +1
2
y=-t
2
z=2t -1
. .. z+1
Hence, Cartesian equation is x—1=-y= -

(This confirms that the path is indeed a line.)
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Example 18.4
-2
The acceleration of a particle P at time 7 seconds is given by a(f) =< 62,0, 0 > cms .

Its initial displacement and velocity are <1, 1,-2>cmand <0, 0, 1 > cms 1 respectively.

(a) Find the position vector of P when it crosses the y-z plane.

(b) Find the velocity of P as it crosses the x-y plane and state the angle the velocity vector
makes with the x-y plane.

(c) Find the magnitude of the change in displacement in the first 2 seconds.

(d) Find the distance travelled along the path in the first 2 seconds.

Solution:

2
(a) Integrate withrespecttos#. vw(¥)=<3r,0,0>+C.
2
v(0)=<0,0,1> = v()=<3¢,0,1>.

3
Integrate with respectto .  rHt)=<¢,0,t>+K.

3
r0)=<-1,1,-2> = r)=<t-1,1,t-2>
When it crosses the y-z plane, x-component of r = 0.

3

= t-1=0 = r=1.
Hence, r(1)=<0,1,-1>cm.

(b) When it crosses the x-y plane, z-component of 7 = 0.
= -2=0 = t=2.
Hence, v(2)=<12,0,1>.

Vector normal to the x-y plane is <0, 0, 1 >.
Angle v(2) makes with <0, 0, 1 > is 85.2363 = 85.20.
Hence, angle v(2) makes with x-y plane = 90 — 85.2 = 4.80.

2
(c) Change in displacement = I< 3t2,0,1 > dt
0

2
= [<t3,0,t>}
0

=<8,0,2>
Hence, magnitude of change in displacement = | <g,0,2> l
= 2\/ﬁ ~ 8.25 cm.

2
(d) Distance travelled along path = ” < 3t2,0,1 >‘ dat
0

2
= J'\/ 9r* +1 dt
0

=8.6303 = 8.63 cm
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Exercise 18.2

1. The velocity of a moving body P at time # is given by v(?).
Given r(a), determine the position of P at the indicated times.
@ v()=2i+4j-2k,H0)=0i+0j+2k t=5.

(b) v(t)=<-1,2t,4t>, 1r0)=<0,2,2>, t=4.

(©) v(#) =< (1 +2i), (1 -20), % > r0)=<-2,0,1>, t=1.
+

mtsin 2t -1
(d) v(f)=| mcos2nt |, n(0)=| 1 |, t=%.
nsin? wf 0

2. The displacement and acceleration of a particle P at time ¢ are #(¢) and a(r) respectively.
For the given conditions, find the displacement of the body at the indicated times.
(@) a()=<0,0,10>,v(0)=<1,-1,5>r0)=<2,1,0>,¢=5
(b) a(h)=-2i+2j,v(0)=0i+0j+2k, r(0)=<-1,-1,2>¢=10
(©) a(®)=<sin(?),0,—cos (H>v0)=<2,1,-1>r0)=<1,1,0>t=2n
(d) a(f)y=<4sin(f),3 cos(f),6t>v(0)=<0,0,0>r0)=<-1,1,0>,t=2n

3. The position vector of a particle P, ¢ seconds after projection, is given by

r(fy=3ti+ (t—t )j+ 2k, where the components are measured in m.

(a) Find the position vector of the point of projection and the speed of projection.
(b) Calculate the angle with which P crosses the x-z plane.

(c) Show that P undergoes constant acceleration.

(d) Determine the distance travelled by P in the first second.

4. The position vector of a particle P, 7 seconds after projection, is given by
r(f) = <sin (¢), cos (?), sin (f) >, where the components are measured in m.
(a) Show that the acceleration of P is always parallel to its displacement.
(b) Determine the angle and speed of impact of P with the x-y plane.
(c) Find the change in displacement in the first 27 seconds. Comment on your answer.

2
5. The velocity vector of a particle P, at time ¢ seconds, is given by v(f) =<¢—-1,0,¢ -t >,
-1
where the components are measured in cms

(a) Find when P is instantaneously at rest.

(b) Calculate the distance travelled by P between the time it starts moving and when it
it is instantaneously at rest.

(c) Determine, when if ever, the velocity is perpendicular to the acceleration.

6. A particle P is projected from the origin. The velocity vector of a particle P, at time ¢
-1
seconds, is given by v(¢) = < sin (¢), cos (¢), sin (¢) > cms

(a) Calculate the minimum and maximum distance between P and the origin.
(b) Calculate when and where, the velocity and acceleration vectors are
perpendicular for 0 <z <2m.
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7. A particle P starts moving from rest from < 1, 2, 1 >. Its acceleration, at time ¢ seconds,
-2
is given by a(f) =<2,-2,2 > cms
(2) Show that P is never instantaneously at rest in its subsequent motion.
(b) Determine the Cartesian equation of the path traced by P.

-1
8. A particle P is projected from <0, 1, 2 > with velocity <-4, 1,-2>ms . The

acceleration of P, at time ¢ seconds, is given by a(#) = < 21z, 0, 0 > cms 2.

(a) Calculate the angle between the velocity and acceleration vectors at 7 = 1 second.
(b) Determine when and where the velocity and acceleration vectors are perpendicular.
(c) Determine the parametric equation of the path traced by P.

9. A particle P starts moving from rest from the origin. Its acceleration at time # seconds,
)
is given by a(f) =<0,-2,4>ms . At the same time, a second particle Q starts moving
-1
from <0, 4, —16 > m with an initial velocity of <0, -4, 0>ms and with a constant

-2
acceleration of <0, 0, 12 >ms .
(a) Calculate when and where P and Q collide.
(b) Calculate the angle of impact between P and Q.

10. A particle P starts moving from the point < 1, —1, —1 > m with an initial velocity of

-1 -2
<1,0,1>ms . Its acceleration at time ¢ seconds, is given by a(f) =<0,2,0>ms .
At the same time, a second particle Q starts moving from < 1, —1, —2 > m with an initial

-1 -2
velocity of <1, 0,2 >ms and with an acceleration of <0, 67,0 >ms .
(a) Calculate when and where P and Q collide.
(b) Calculate the angle of impact between P and Q.

18.3 Motion in a plane (2-dimensions)

¢ In this section, we will examine in greater detail, motion in two-dimensions.

e Let the displacement/position vector of a moving body P at time ¢ be

r)=< 10, g(0) >.
o The velocity vector is v(t) = ¥'(z) =< f'(¢), g'(¢) >.

« The direction of the velocity vector is given by 0,
o— 0.
AU
o The acceleration vector is a(f) = r"(t) =< f"(x), g"(x) >.
« The direction of the acceleration vector is given by a,
g0
7@

where tan

where tan o =
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18.3.1 Circular and Elliptical Motion

o Let the position vector of a moving particle P at time 7 be
r=<asin ®t+p, b cos ot +qg>.

e The parametric equation for the path traced by P is:

x=asinot+p y=bcoswt+g
= sin of = a4 Ccos ®f = Y79
a
2 2
2 2 _ —
sin wfr+cos wfi=1 = (x f) +(y 9) =1.

2
a b
» Hence, the path traced by P is an ellipse.

2 2 2
If a = b, then the path is a circle with equation (x —p) + (¥ —q) =a .

¢ The velocity and acceleration vectors for P are respectively:
2 2
v=<am cos ®f, —bm sin o> and a=<-qw sin of, —b® cos wf>.
2
o Clearlya=-o r.
That is, a is parallel to r but in an opposing direction.

3.2 72
+ The scalar product asv=w (b - a ) sin of cos ®¢

1 3.2 2 .
=5m(b —a ) sin 2ot

o If the pathisacircle,thena=bandasv=r.v=0 V+.
o If the path is an ellipse, then a # b

nm
anda-v=r-v=0fort=7 where n e Z7.

e Uniform Circular Motion
2

e a=-o r wherer=<zasinwf+p,*acos of+q>.
e agev=r.v=0Vt¢

¢ Period of motion = —2—E
o)
¢ Elliptical motion
2

e a=-m r where r =<+ asin ot +p,+ b cos of + g > where a # b.
nT
ea.v=rev=0forr= EX where n € Z" .

. } 27
e Period of motion= —.
o)

e Particles undergoing circular and elliptical motion share the same

equation of motion @ = —@ r with the same period.
o The difference is that for circular motion @ « v =r « v =0 all the time
whereas for elliptical motion a « v =r « v = 0 for only some of the time.
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Example 18.5

The position vector of P at time ¢ seconds is given by r(f) =<2 cos ¢, 3 sin ¢ > cm.

(a) Find the times when the velocity is perpendicular to the acceleration for 0 < ¢ < 27.

(b) Find the minimum and maximum speed of P and state where and when these speeds
occur for 0 <7< 2m.

(c) Sketch the path traced by P indicating its direction of motion. Locate on your graph the
locations where P is losing speed and picking up speed for 0 < ¢ < 2.

(d) Comment on your answers in (a), (b) and (c).

Solution:

(a) Differentiating »(?): v({)=<-2sint,3 cost>
Differentiating v(?): a(fy=<-2cost,—3sint>

a.-v=0 = Ssintcost=0
25sin2t=0

t=0, E,n, 3—“,27&
2 2

(b) Speed for v: |vl= \/4sin2 t+9cos’

~ | 4sin?1+9(1—sin? )

=4 9-5sin’ ¢

-1
Hence, minimum speed =2 cms  when sin 7= 1.

That is, when ¢ = g and §2£ at <0, 3 >and <0, -3 > respectively.

-1
Maximum speed =3 cms  when sin 7= 0.
That is, when =0 and 2r at <2, 0 > and when f=mw at <-2, 0 >.

(c) y
5 -4
Whent=0,r=<2,0> picki | }  Slowing down
icking up spee:
Whent=0 .r=<2 O+ > Bpsp / Maximum speed
Hence, P moves in an anti- Minimum speed //--//

clockwise direction from <2, 0 >. ’5 1T T 5’: x
. T %ng up speed
Slowing down

54

(d) The maximum and minimum speeds occur when v(¢) and a(?) are perpendicular.
Maximum speed occurs when P is nearest the origin and minimum speed occurs
when P is furthest from the origin.
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Example 18.6

-1
A particle P starts from < 2, 1 > cm with a velocity of <0, ~4n >cms . The acceleration
2 2 -2
vector of P at time ¢ seconds is given by a(f) = <—4n cos nt, 4n sin /> cms

(a) Find the direction P is heading when ¢ = 1 seconds.

(b) Show that P is travelling with constant speed.
(c) Determine the Cartesian equation of the path traced by P.
(d) Calculate the distance travelled in 5 seconds.

Solution:
(a) Anti-differentiating a(?): v(f)=<-4nsinnt, 4ncosnt>+ C
v(0)=<0,-4n> = C=<0,0>
Hence: v(t) < —4 sin 7tt, —47 cos Tt >
wLy= <—4“‘/— ,~2m >,
3
Direction of v(l) is given by tan 6 = —_—n——
3 _[4”‘/5 j toPolCL _4?'{3— s-2n1)
2
-3';
. -1, [4'“ 1% ]]
Thatis 6 =tan — in Quadrant 3.
NE)
o S5t 0
Hence, direction of P = —? or—150 .
(b) Speed = | < —4n sin nt, 41 cos Tt > |
— 1672 (sin? nit + cos? mr) = 4m
Hence, P travels with constant speed.
(c) Anti-differentiate v(¢): rf)=<4cosnt,—4sinnt>+K
H0)=<2,1> = K=<-2,1>
Hence: r)=<4cosmt—2,—4sinmt+1>

Parametric equation of path:
x=4cosmt—2 y=—4sinnr+1

x+2 -y
= cos Tt = e sin wt = —=

2 2
Therefore: (x * 2] + (1—_ZJ =1.
4 4

2 2
Cartesian equation of pathis (x +2) +(y—-1) =16

(d) Period of motion is 2T _ 2 seconds.
i

5 seconds covers 2.5 cycles or 2.5 circular revolutions of radius 4 cm.
Hence, distance travelled =2.5 x 2 X t x 4 = 20% cm.
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Exercise 18.3

1.

The particles P, Q and R each undergo circular motion and have position vectors at

time ¢ given by #(f) = 2 sin (nt) i + 2 cos (nf) j, r(f) = 2 cos (nf) i + 2 sin (nf) j and

K(#) =2 cos (nt) i — 2 sin (nf) j respectively. Determine the initial positions, the direction
of motion (clockwise or anticlockwise) and equation of the paths for each particle.

. A particle P moves with constant speed along a circle such that its velocity at any

time ¢ is given by v(7) = < cos (7t), sin (nf) >. Determine:

(a) the direction P is travelling at times ¢ = 1/2, 2/3 seconds

(b) the acceleration of P at time # =1 second

(c) the distance travelled by P between £ =0 and ¢ = 1/2 seconds.

. A particle P moves with constant speed along a circle such that its velocity at any

time 7 1s given by v(f) = < — sin (4nt), cos (4nf) >. Determine:
(a) the speed of P (b) equation of the path of P and its direction of motion.
(c) the distance travelled by P between ¢ =1 and ¢ = 2 seconds.

. Verify that a particle with a position vector at time ¢ given by:

r(f)=[2 +cos (H)] i + [1 + sin (£)] j undergoes uniform circular motion.

. The velocity vector of a moving particle P, at time ¢ minutes, is given by,

w(f) = <27 sin (2nt), 27 cos (27f) > metres per minute.

(a) Find the displacement of P when 7= 1 minute, given that #(0) =< -1, 0 > m.
(b) Find the acceleration of P when ¢ = 2 minutes..

(c) Find when P is moving perpendicular to the vector <1, 1 >,

The velocity vector of a moving particle P, at time # seconds, is given by,

-1
V() =< T cos ki ,Esin kil >ms .
2 2) 2 2

(a) Find the displacement of P when 7 = 4 seconds, given that #(0) =<0, 1 >,
(b) Find the acceleration of P when ¢ = 2 seconds.

(c) Find when P is moving parallel to the vector <1, NES

The acceleration vector of a moving particle P, at time ¢, is given by,
-2

a(f)=<sint,cost>cms . v(0)=<-1,0>and #(0)=<0, 1 >

(a) Find when the acceleration of P is parallel to <0, 1 > .

(b) Find when the acceleration of P is perpendicular to the vector < NG ,—1>.
(c) Find the equation of the path of P. Give its direction.

The acceleration vector of a moving particle P at time ¢ is given by,

a(t) =<4 cos 2t, 4 sin 2t > ms 2. r0)=<-1,0>mand v(0) =<0, -2 > ms 1.
(a) Show that P experiences uniform circular motion. Give its direction.

(b) Find the velocity when the acceleration of P is parallel to < -1, 1 >.

(c) Find when the acceleration of P is perpendicular to the vector <-10, 10 >.
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9. The position vector of particles P and Q at time # seconds are #(f) =<2 cos £, 2 sin ¢ >
and r(f) =<1+ cos ¢, 1 + sin ¢ > respectively. Determine if P and Q will collide.
If they do collide, state where and when this occurs.

10. The position vector of a moving particle P at time 7 is given by r(f) =<3 cos #, 2 sin £ >.
(a) Find the times when the velocity is perpendicular to the acceleration for 0 < ¢ < 2.
(b) Find an expression for the speed at time ¢, | v(2) .
(c) Find the minimum and maximum speed of P and state where and when these
speeds occur for 0 <7< 2m.
(d) Sketch the path of P indicating its direction and indicate when P is losing speed and
picking up speed.

11. The position vector of a moving particle P at time 7 is given by r(¢) = <3 cos ¢, —4 sin ¢ >.
(a) Find the period of motion for P.
(b) Find the times when the velocity is perpendicular to the acceleration during the
first cycle.
(c) Calculate where and when P is furthest from the origin and state the velocities.
(d) Calculate where and when P is closest to the origin and state the velocities.

12. Verify that a particle with position vector at time ¢ given by
r(t) =<2+ 3 cost, 4+ 5 sin ¢ > undergoes elliptical motion. State the period of the
motion and the Cartesian equation of its path.

13. The velocity vector of a moving particle P, at time ¢ seconds, is given by,

v(t) = < 67 sin 27t, 87 cos 21 >) cms .

(a) Find the distance from P to the origin when ¢ = 2 seconds, given that (0) =<-3,0 >.
(b) Find the acceleration of P when P has maximum speed.

(c) Find when P is moving parallel to the vector <0, 10 >.

(d) Find when P is moving perpendicular to the vector <8, 6 >.

14. The velocity vector of a moving particle P, at time ¢ seconds, is given by,
v(f) =-57 sin (nf) i — 12w cos () jcms .
(a) Find the distance from P to the origin when ¢ = 1/4 seconds, given that #(0) = 5i .
(b) Find the equation of the path of P given that #(0) = 5 and give its direction.
(c¢) Find when and where P is moving parallel to the vector 12; .
(d) Find when P is moving perpendicular to the vector 12 J3i+s j-

15. The acceleration vector of a moving particle P, at time ¢,

is a(f)=<-3sint,—4 cos t>cms 2. r1/2) =<3, 0>cm and v(n/2) =<0, -4 > cms 1.
(a) Find the maximum and minimum speed of P.

(b) Find the velocity when the acceleration of P is perpendicular to its velocity vector.
(c¢) Find when the acceleration of P is perpendicular to the vector < 3,0 >.
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16. The acceleration vector of a moving particle P at time 7 is given by
2 ) -1

a(t)=< —%cos (%t] y— n? sin (%t) >cms . v(0)=<0,2n>cms and

r0)=<4,2>cm.

(a) Show that P experiences elliptical motion. State the Cartesian equation of its path
and its direction of motion.

(b) Find the distance to the origin when the acceleration of P is perpendicular to its
velocity.

17. The position vector of particles P and Q at time ¢ seconds are #(¢) = —3 cos () i + 4 sin(¢) j
and r(f) =[—4 + 2 cos (£)] i + [3 — sin (¢)] j respectively. Determine when and where P
and Q collide and the velocity of P and Q at the time of collision.

18. The position vector of particles P and Q at time # seconds are
rt)=[1+4sin ()] i+ [1+3cos(f)]jand r(H)=[1 —sin (H)] i+ [-1+cos (H)]]
respectively. Determine when and where P and Q collide and the angle between the
velocity vectors of P and Q at the time of collision.

18.3.2 Projectile Motion

e In this section we consider the motion of a particle moving in a vertical plane under
the influence of gravity. The only force acting on the particle is gravity with air
resistance being ignored.

e Consider a particle P projected from the point » =<a, b >m

with velocity v=<p, g >ms . As gravity is the only force acting on P,
2

the acceleration a(f) =<0, —g > ms  where g is the acceleration due to gravity.

 Integrate a(f): W) =<p,—gt+q> sincev(0)=<p,qg>.
2
« Integrate v(7): Ho)=<pi+a, —% +qt+b> since H0) =<a, b >,
t2
o Parametric equation of path: x=pt+a y= _gT +qt+b
xX—a x—a g —a
Substitute ¢ = into y: yZ—E( j +q(x j +b
p 20 p p

o Clearly the Cartesian equation is that of a parabola.
Therefore, the path traced by a projectile moving solely under the influence
of gravity is parabolic in shape.
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o Consider a particle P projected from the origin with speed v at an angle of ©

=2
with the x-axis. The acceleration a(f) =<0, -g>ms where g is the
acceleration due to gravity.

Velocity of projection in component form:
v(0)=<vcos 0, vsin 6 >.

o Integrate a(?): v(f)=<vcos 0, —gr+vsin0>.
e Integrate w(¢): rHf)y=<vcosHt, —% +vsin0¢>.
o Parametric equation of path:
x=vcos0Ot y=—ig—;i+vsin9t
Substitute # = into y:

vcosO

2
2—5( X ] + v sin 6( X
2\ vcosH vcos©

2
= _gsec2 0 x% +tan O x.
2v

¢ Hence, the Cartesian equation of particle projected with a
speed of v at an angle 6 to the origin is

2
y== _gsec2 0 x> +tan O x.
2v

Example 18.7

-1
A particle P is projected from the origin with a speed 0of 20 ms  at an angle of 600 to the
horizontal. Assume that the only force acting on P is the gravitational force and that the

-2
acceleration due to gravity is 9.8 ms . Find an expression for v(¢) the velocity vector of P
¢ seconds after projection.

Solution:

Velocity of projection in component form: <20 cos 60, 20 sin 60 >=<10, 10 NERS
As P experiences no horizontal acceleration its horizontal velocity remains unchanged.

-2
P experiences a vertical acceleration of 9.8 ms

-1
hence its vertical velocity changes by —9.8 ms every second.
Therefore: ()= <10, 103 —9.8¢>

Alternative Solution:

Integrate a(f) = <0, -9.8>. = w()=<10,-9.8¢+ 10+/3 >as »(0) =< 10, 10+/3 >.
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Example 18.8

-1
A particle P is projected from the origin with a speed of 60 ms  at an angle of 300 to the
horizontal. Assume that the only force acting on P is the gravitational force and that the

acceleration due to gravity is 9.8 ms .

(a) Find an expression for the position vector of P ¢ seconds after projection.

(b) Find the time taken for P to reach its maximum height and hence find the time of flight.
(c) Find the range for P.

(d) Find the Cartesian equation of the path of P.

Solution:

(a) Initial velocity in component form: v(0) =< 60 cos 30, 60 sin 30 > =< 60 NE) , 30>,
Hence: () =< 3043 ,30-9.8¢>
2
Integrate: H(#)=<30~34,30—4.9f > since 0)=<0,0>.

(b) When P achieves maximum height, the vertical component of v() is zero.
Hence 30-98t=0
Thus t=3.06 seconds

As the path is parabolic, it is symmetrical about the axis of symmetry.

Hence, the time taken for P to hit the ground again, T, is twice the time taken to
reach the maximum height.

Therefore T =6.12 seconds.

(c) P hits the ground again after 6.12 seconds.
Substitute # = 6.12 into the horizontal component r(¢):

7y = (30+/3)(6.12) = 318 metres
(d) The parametric equation of the path is given by:

2
x=303¢ y=30t—4.9¢
X

3043

2
x X
Substitute into y: =30 ——= |-4.9| ——=
o7 (30\/5] [30\6]

2
Hence, the equation of the path is y =0.577x — 0.0018x

Rearranging: t=

Notes:

o The time of flight is the time the body is in the air. That is, the time interval between projection and the
body hitting the ground.

e The range is the horizontal distance covered between projection and the body hitting the ground.
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Exercise 18.4

For Questions 1 to 12, assume that the only force acting on the moving bodies is the gravitational force and that

o -2
the acceleration due to gravity is 9.8 ms .

1.

-1
A particle P is projected from the origin with a velocity of <30, 30 V3 >ms .

(a) Find the velocity v(f) of P at any time # and find the direction of P when # =5 sec.
(b) Find the angle between a(5) and v(5).
(¢) Find the time of flight and range of P.

-1
. A particle P is projected from the origin with a speed of 50 ms ~ at an angle of 45 to the

X-axis.

(a) Find r(3), the position vector of P at time ¢ = 3 seconds.

(b) Find the angle between #(3) and v(3) where v(3) is the velocity of P at # = 3 seconds.
(c) Find when P is at a height of 50m.

(d) Find the Cartesian equation for the path of P.

-1
. A particle P is projected from the origin O with a velocity of <20, 20 >ms .

(a) Find #(¢), the position vector of P at time 7.
(b) Find the angle of impact between P and the ground.

(c) Determine where and when P is travelling at an angle of 300 to the x-axis.
(d) Find the total distance travelled by P (from projection to the time it hits the ground).

. A particle P is projected from the edge of a 150 m high building with a velocity of

<253 ,25>ms 1. Take the foot of the building as the origin of the x-y axes.

(a) Find the velocity vector and position vector of P at time z.

(b) Find the time P takes to hit the ground.

(c) Find the angle with which P hits the ground.

(d) Find the horizontal distance from the base of the building where P hits the ground.

. A particle P is projected horizontally from the edge of a 100m cliff with a speed of

50 ms 1. Take the base of the cliff O, as the origin of the x-y axes.

(a) Find an expression for the velocity vector and position vector of P at time 7.
(b) Find the time P takes to hit the ground.

(c) Find the maximum horizontal distance reached by P (measured from the cliff).
(d) Find the angle with which P hits the ground.

. A boy throws a ball from ground level towards a large flat roof a building. The near edge

of the roof R is at a horizontal distance of 7.5 m from the boy and the roof is 4m above
ground level. The ball passes vertically above R 1.5 seconds after being thrown. The
velocity vector ¢ seconds after projection is given by v(f) = < f—; , 112—3v—9.8t >, where v is
a constant. Take the point of projection as the origin.

(a) Find the speed of projection.

(b) Find the height clearance of the stone as it passes over R.

(c) Find the distance from R of the point where the stone hits the roof.

(d) Find the magnitude and direction of the stone’s velocity when it hits the roof.
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7. A particle P is projected from the point A at the foot of a plane inclined at an angle of 30°

10.

11.

12.

to the horizontal. The velocity vector of P is given by v(¢) =30 i + (30 N 9.89)j,
where ¢ is time in seconds after P is projected. P hits the inclined plane at B.

The position vector of point B (with point A as the origin) is p i + g j.

(a) Find expressions for p and g in terms of #, the time taken for P to hit B.

(b) Find the time taken for P to travel from A to B.

(c) How far up the hill is point B?

The position vector of a particle P, at time # seconds, is given by

H{) =< 201 c0s 20°, 20¢ 5in 20° — 4.9 > m.

(a) Find the equation of the path of P and show that the path is parabolic.
(b) Find the distance of P from the point of projection when ¢ = 1 second.
(c) Find the distance travelled by the ball along its path in the first second.

(d) Find when P is moving parallel to < cos 200, sin 200 >,

The particle P is projected from the origin with a speed of 10 ms ! at an angle of 36

to the x-axis.

(a) Find the change in displacement between ¢ = 2 seconds and ¢ = 3 seconds.

(b) Find the distance between its position at =2 and ¢ = 3 seconds.

(c¢) Find the distance travelled along its path between ¢ = 2 seconds and 7 = 3 seconds.
(d) Find the change in the direction of motion between 7 = 2 seconds and ¢ = 3 seconds.

Two particles P and Q are simultaneously projected under gravity from the points O and
A respectively where OA is a horizontal line of length 200m and the point A is to the
right of O. Take O as the origin of the x-y axes. The position vector of P, ¢ seconds after

projection is given by r(¢) = 18¢i + (241 — 4.9t2) j- The velocity of Q, ¢ seconds after
projection is given by v(¢) =-32i+ (24 — 9.8¢) .

(a) Find when P and Q collide.

(b) Find the position vector of the point of collision.

A particle P is projected from the origin with initial velocity v(¢) =28 i + (100 — 9.8¢) j
towards an inclined plane whose line of greatest slope has equation r = 480 i + A(2i + j),
where A is a parameter. Find the time taken for the particle to strike the plane.
Determine the distance along the line of greatest slope from the point where A = 0 to the
point of impact.

A missile is fired at a target from the origin O, with the velocity vector ¢ seconds after it
was fired, given by v(¢) = u cos (0) i + [u sin () — g¢] j , where u, 6 and g are constants.
The target is moving with velocity v i and at the instant the missile is fired the target is at
position /4 j.
(a) Prove that for the missile to hit the target u2 > v2 + 2gh.
(b) If this condition is fulfilled, and the missile does hit the target and has velocity

0.3u i + 4u j immediately before collision, find the value of cos (8).
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Questions 13 to 15 include the presence of forces other than gravity.

13. The position vector at time ¢ of a particle P is given by r(¢f) = (t3 -20i+ t2 Jj,t=0.
(a) Obtain an expression for the velocity of P at time ¢.
(b) Obtain an expression for the acceleration of P at time 7.
(c) Find the two values of ¢ for which the acceleration and the velocity of P are
perpendicular.

14. The position vector of a moving particle at time ¢, is given by
2
r()=(5+200)i+(95+ 10t - 5¢)j.
(a) Find the initial velocity of P.
(b) Find the time T when P is moving at right angles to its initial direction of motion.
(¢) Find the distance of P from its initial position at time T.

-1
15. An object P has an initial velocity of < 10,20 >ms . P experiences a constant

acceleration of < -1, -10 > ms 2. Its initial displacement #(0) = 0. Find:
(a) the direction of P at time # = 1 second

(b) the distance between P at time ¢ = 2 seconds and its initial position
(¢) the maximum height reached by P and the corresponding value of ¢
(d) the point where P hits the ground and the corresponding value of 7.

-1
16. A particle P has an initial velocity of 5i+ 15 ms . Its initial displacement vector

r(0)=0. The acceleration of Pis 2 i — 10 ms 2. Find:

(a) the horizontal distance travelled by P in the first 2 seconds

(b) the change in displacement of P in the first 2 seconds

(d) the distance between P at time ¢ =2 seconds and its initial position
(e) the distance travelled by P along its path in the first 2 seconds.
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19 The Central Limit Theorem

19.1 Sampling Distributions

o The table below shows the heights (in cm) of eight samples of ten adults each and the
mean height of the adults in each sample. These samples are taken from a larger set
called the population or a parent set.

Sample 1 2 3 4 5 6 7 8
175 157 186 191 186 180 173 166
173 187 191 161 170 156 169 189
175 165 177 154 196 194 170 179
150 190 166 167 200 188 161 162
177 168 176 192 176 168 187 152
151 193 198 196 173 168 157 177
187 151 190 174 174 172 185 200
156 193 184 171 200 154 190 186
176 179 198 172 169 199 191 187
176 154 195 173 168 182 172 165

Mean 169.6 173.7 186.1 175.1 181.2 176.1 175.5 176.3

e It can clearly be seen that the sample means, 169.6, 173.7, 186.1, 175.1, 181.2,
176.1, 175.5 and 176.3 cm are all different and form a distribution of their own.

o The distribution formed by the means of all possible samples of size 10 from this
population is called the sampling distribution of sample means of sample size 10.
There are different sampling distributions of the sample means for samples of
different sizes.

» The set of eight sample means above form a frequency distribution
of sample means of sample size 10. As the number of samples obtained
increases, the frequency distribution approaches the sampling distribution
of sample means of sample size 10.

o [t can be shown that if the samples of size » are taken from a population with mean
p and standard deviation o, then the sampling distribution of the sample means of

. : ... O
sample size » will have a mean of p and standard deviation —.

7

» Note that the standard deviation of the sampling distribution depends on the
size of the sample and not on the number of samples taken.

o If the parent (population) distribution is normal, then the sampling distribution of
sample means will also be normal.
e For example, if samples of size 20 are taken from a population with a
normal distribution with mean 175 ¢cm and standard deviation 12.2 c¢m, then
the distribution formed by the sample means will also be normally

distributed but with mean 175 cm and standard deviation 2 cm.

V20
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19 The Central Limit Theorem

Example 19.1

The mean weight of year 12 students in a certain state is known to be normally distributed

with mean 65.2 kg with standard deviation 4.7 kg. Samples of size 25 each are taken and the

mean weight of each sample calculated.

(a) Find the mean weight and standard deviation of the distribution of the sample means.

(b) Find the probability that the mean weight of a randomly chosen sample is less than 66 kg.

(c) Of 300 samples taken (each of size 25), how many of these samples would have mean
weights that exceed 65 kg?

Solution:
(a) Mean weight of sample means = 65.2 kg

Standard deviation of the sample means = A7 0.94 kg

J25

(b) Let X: sample mean
Since the parent population is normally distributed, X ~ N(65.2, 0.942).
Hence, P(X <66)=0.8026.

(¢) P(X >65)=0.5842.
Hence, expected number = 300 x 0.5842 = 175.3 = 175.

Example 19.2

X is a binomial variable with n =10 and p = 2 . A sample of 20 observations on X is taken

5
and the mean of the sample X calculated.
(a) Find the mean and standard deviation for X.
(b) Find the mean and standard deviation for X .

Solution:

(a) Mean for X =10 x % =4

Standard deviation = JI10x—x= =

215
=

N
W | w

(b) Mean for X =4

(3]
R4l e
w

o5

J20

B
<.

and standard deviation for X =
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Exercise 19.1

L.

The random variable X is normally distributed with mean 100 and standard deviation 12.

Samples of 20 observations of X are taken and the mean of each of the samples X
calculated.

(a) Find the probability distribution for X .

(b) Find P(X > 105) (¢) Find P(X> 105).

The normal variable X has mean 72 and standard deviation 8. Samples of 50
observations of X are taken and the mean of each of the samples X calculated.
(a) Find the probability distribution for X .

(b) Find P(70 £ X <72) (c) Find P(70 < X< 72).

The normal variable X has mean 750 and standard deviation 25. Samples of
observations of X are taken and the mean of each of the samples X calculated.
(a) Find » if the standard deviation for X is to be 2.9.

(b) Find # if the standard deviation for X is to be between 2.8 and 3.0.

The random variable X is normally distributed with mean 2.5 and standard deviation
0.05. Samples of 7 observations of X are taken and the mean of each of the samples X
calculated.

(a) Find » if the standard deviation for X is to be 0.01.
(b) Find  if the standard deviation for X is to be between 0.005 and 0.01.

. The random variable X is uniformly distributed with variance 3 in the interval 0 < x <6.

Samples of  observations of X are taken and X the mean value of X calculated.
(a) Find the mean for X.

(b) For n =49, find the mean and standard deviation for X .

(¢) Find » if the standard deviation for X is to be between 0. 5 and 1.0.

The uniform variable X is distributed in the interval 0 <x < 36 with variance 108.
Samples of n observations of X are faken and X the mean value of X calculated.
(a) Find the mean for X. ’

(b) For n= 281, find the mean and standard ‘deviation for X .

(¢) Find » if the standard deviation for X is to be between 1.0 and 1.5.

The mass of a certain species of adult wallabies is known to be normally distributed with

mean 1.7 kg with standard deviation 0.13 kg. Samples, each consisting of 25 adult

wallabies of this species are weighed.

(a) Describe with reasons the probability distribution for the mean mass of the
samples.

(b) Find the probability that a randomly chosen adult wallaby of this species has mass
less than 1.75 kg. '

(c) Find the probability that a randomly chosen sample of 25 adult wallabies of this
species has a mean mass of less than 1.75 kg.
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19 The Central Limit Theorem

8. The length of a certain species of adult salmon is known to be normally distributed with

mean 875 mm and standard deviation 11.7 mm.

(a) Describe with reasons the probability distribution for the mean length of samples
of 20 adult salmon of this species.

(b) Find the probability that a randomly chosen adult salmon of this species measures
at least 880 mm long.

(¢) Find the probability that a randomly chosen sample of 20 adult salmon of this
species has a mean length of at least 880 mm.

(d) What should the size of the sample be, if the standard deviation of the sampling
distribution of sample means is to be no more than 1.5 mm?

9. The sampling distribution of the mean heights of samples of 60 eighteen year old males
has mean 175 cm with a standard error of 1.1 cm. Assume that the heights of eighteen
year old males are normally distributed.

(a) Find with reasons, the mean heights of all eighteen year old males and its associated
standard deviation.

(b) Find the required sample size if the standard deviation of the sampling distribution of
the sample means is to be 0.9 cm.

(c) Of 200 samples, each with 25 eighteen year old males, how many of these samples
would have mean heights that exceed 178 cm.

(d) Of 5000 eighteen year old males selected, how many of these would have heights
that exceed 178 cm.

10. The sampling distribution of the mean heights of samples of 80 eighteen year old females
has mean 163 cm with a standard error of 1.1 cm. Assume that the heights of eighteen
year old females are normally distributed.

(a) Find with reasons, the mean heights of all eighteen year old females and its
associated standard deviation.

(b) Find the required sample size if the standard deviation of the sampling distribution of
the sample means is to be 1.2 cm.

(c) Of 100 samples, each with 20 eighteen year old females, how many of these samples
would have mean heights that are between 162 and 164 cm.

(d) Of 2000 eighteen year old females selected, how many of these would have heights
between 162 and 164 cm.

11. X is a binomial variable with » =50 and p = —3— A sample of k observations on X is

taken and the mean of the sample X calculated.
(a) For k=25, find the mean and standard deviation for X and X.
(b) Find k if the standard deviation for X is to be between 1.0 and 1.5.

12. X is a binomial variable with » = 100 and p = 0.95. A sample of k observations on X is
taken and the mean of the sample X calculated.
(a) For k =36, find the mean and standard deviation for X and X.
(b) Find k if the standard deviation for X is to be between 0.5 and 1.5.

© O.T.Lee 275



Mathematics Specialist Units 3 & 4

13. It is known that 5% of biros are defective. These biros are sold in packs of 12.
(a) Find the mean number of defective biros in a randomly chosen pack, stating its
accompanying standard deviation.
(b) Find the mean and standard deviation for the sampling distribution of the mean

number of defective biros per pack.

14. An eight sided die (with faces numbered 1 to 8) is rolled 36 times. Define X: No.
obtained on one roll of the die. Define X : the mean of the 36 numbers obtained.

*(a)
(b)

Find the probability distribution for X stating its mean and standard deviation.
Find the mean and standard deviation for X .

15. A six sided die (with faces numbered 1 to 6) is rolled » times. Define X: No. obtained on
one roll of the die. Define X : the mean of the » numbers obtained.

*(a)
(b)
(©)

Find the probability distribution for X stating its mean and standard deviation.
For n = 16, find the mean and standard deviation for X .
Find # if the standard deviation for X is to be between 0.1 and 0.4.

19.2 The Central Limit Theorem

Previously, it was pointed out that the sampling distribution of sample means of
sample size #:

 has mean = population mean p
h= population standard deviation _

c
\Jsize of sample Jn

o has standard deviatio

The Central Limit Theorem states that the sampling distribution of sample means
has a distribution that approaches the normal distribution as the sample size »
increases.
« That is, as the sample size » increases, the sampling distribution of sample
means of sample size » tends towards a normal distribution with

S

N

For practical purposes, it is acceptable to treat the sampling distribution as normally
distributed as long as the size of the sample n > 30.

mean = p and standard deviation =

2
e Therefore, if n>30, X ~ N(u, [iJ ).
Jn
That is, irrespective of the probability distribution possessed by the parent
distribution, the sampling distribution of sample means becomes increasingly
normal as the size of the samples increases.
o For example, if the size of the sample # is large and if the parent distribution
is uniform or binomial, the sampling distribution of the sample means of
sample size » will be approximately normal.
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19 The Central Limit Theorem

e The table below summarises the implications of the Central Limit Theorem.

Sampling Distribution for Sample Means

Parent Distribution ; -
Sample size n < 30 Sample size #n > 30
Type Normal Normal Normal
Mean 7! V) v
o} c
Standard Deviation c ’\/7 ’\/_;
Type | Non-Normal Approximate Normal
Mean u V) 3]
c c
Standard Deviation c ﬁ ﬁ

Example 19.3

A continuous random variable X has mean 50 and standard deviation 6.1.
Samples of 100 observations each are taken of X and X the means for each sample
calculated. State the probability distribution for X .

Solution:

As the size of the sample = 100 > 30, by the Central Limit Theorem,

X is approximately normally distributed

with mean = 50 and standard deviation = —6L =0.61.

V100

Example 19.4

The amount of soft-drink dispensed by an automatic dispenser is uniformly distributed with

1043
3

mean 300 m] and standard deviation ml. Several samples of 50 cups each were

examined and the mean of each sample calculated.

(a) Describe the probability distribution that best models this distribution of sample means.

(b) Find the probability that a randomly chosen sample has a mean no less than 299 ml given
that it’s mean is no more than 301 ml.
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Solution:

(a) The sample size n = 50 > 30.
Hence, by the Central Limit Theorem,
the sample means will be approximately normally distributed.

Mean for sampling distribution = 300 ml.

1043 -
Standard deviation of sampling distribution = —>— = ~— ml.
pme J50 3
(b) Let X: sample mean . —=
v & =
P(X >299 1% < 301) = P(299~S X <301) normCDf[299,381,—3—s3@8]
P(X < 301) \,(_ 8.77933
077933 normCDf[—w,Sal, TS,SBB]
a 0.88966 5. 77933/8. 88966 e.s:z:
.2
=0.8760 n

Note:

e The parent population has a uniform distribution. As its sample size exceeds 30, the distribution of
sample means has an approximate normal distribution

Example 19.5

A radioactive substance emits particles randomly. The mean time interval between

successive emissions is 90 seconds with a variance of 90. Assume that the particles are

emitted independently and no two particles are emitted at the same time. In a study

conducted, one hundred samples of 60 successive emissions times were recorded.

Define T: the mean time interval between successive emissions for each sample.

(a) Describe the probability distribution for T.

(b) Estimate the probability that the time taken to record 60 successive emissions exceeds 92
minutes.

Solution:

(a) By the Central Limit Theorem, as the sample size is 60 (> 30),

T is approximately normally distributed with mean = 90 and variance = 9—g= % .
o . . . 92 x 60
(b) Mean time interval between successive emissions for sample = = 92 seconds.

Hence, P(T > 92) = 0.05124

Note:
o As in the previous example, the parent population is not normally distributed.
In fact it has an unknown distribution but the distribution of sample means has an approximate normal
distribution as its sample size exceeds 30.
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Example 19.6

A box has 8 green balls and 2 red balls. 5 balls are drawn with replacement from this box and
the number of green balls noted. This procedure is repeated 40 times to form a sample of 40
observations. If we define X: No. of green balls drawn, then we have a sample of 40
observations on X. The mean number of green balls in this sample of 40 is calculated and
denoted X . Other samples of 40 observations on X are formed and X is calculated for each
sample to form a sampling distribution for X .

(a) Find the probability distribution for X stating its mean and standard deviation.

(b) State the probability distribution for X .

(c) Find the probability that for any randomly chosen sample of 40 observations of X, X is
between 3.8 and 4.

Solution:
(a) Since the balls are drawn with replacement,

P(Green Ball) = 8 = 4 which is constant for each draw.
10 5
Hence X~B(n=5,p= %).

Mean number of green balls in a draw of 5 balls = 5 x

w |

=4.

Variance for the number of green balls in a draw of 5 balls = 5 x

_ 25

-y 2
Hence, standard deviation= —~ = ——

55

That is, mean for X is 4 and standard deviation is 2—2

W
w | A

wn|—

(b) The sample size of 40 observations on X exceeds 30.
Hence, by the Central Limit Theorem, X is approximately normally distributed.

Mean for sampling distribution for X = 4.

&

Standard deviation for sampling distribution for X = > =

e
sl&

S 2
(c) X ~N(@, F)E)

Hence, P(3.8 < X< 4)=0.4214.

0. 4213583965

| \‘{2_ =
normCDf{ 3.8s 4, ET3 4

n

Note:
o The parent distribution for X is a binomial distribution which is a discrete distribution.

But the distribution for X is an approximate normal distribution, which is a continuous distribution.
These few examples demonstrate why the Central Limit Theorem is unofficially recognised as the
most important theorem in statistical and probability theory.
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Example 19.7

The amount of mango juice in packs sold by Joy Juice Co. has mean 999.9 ml and standard

deviation 1.1 ml.

(a) Find the probability that a randomly selected sample of 100 packs of mango juice has
mean contents of less than 1000 ml. .

(b) Determine the size # of a random sample of packs of mango juice if the standard
deviation of the sampling distribution of the sample means is to be 0.05 ml.

Solution:

(a) Let X: Mean of sample
Since size of sample = 100 (> 30), X is approximately normal

with mean = 999.9 and standard deviation L1 =0.11.
V100

Hence, P(X < 1000)=0.8183.

(b) Let size of sample be #.

1.1

Standard deviation for X = =005 = n=484.

S

Exercise 19.2

1. The continuous random variable X has mean 200 and standard deviation 35. Samples of
60 observations of X are taken and the mean of each of the samples X calculated.
(a) Find the probability distribution for X.  (b) Find P(X <210).

2. The continuous random variable X has mean 4.5 and standard deviation 1.2. Samples of
80 observations of X are taken and the mean of each of the samples X calculated.
(a) Find the probability distribution for X . (b) Find P(4.4 < X<4.6).

3. The variable X is uniformly distributed for 0 < x < 24 with standard deviation 4 V3.
Samples of 36 observations of X are taken and the mean of each of the samples X

calculated.
(a) Find the probability distribution for X .
(b) Find P(11 <X <13) (c) Find P(11 < X < 13).

4. The variable X is uniformly distributed for 10 <x <46 with standard deviation 6 V3.

Samples of » observations of X are taken and the mean of each of the samples X

calculated.
(@) For n =49, find the probability distribution for X .
(b) For n=49, find: (i) P(28 <X <30) (i) Find P(28 < X < 30).

(¢) Find » if the standard deviation for X is not to exceed 1.15.
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5. The waiting time at a doctor’s surgery is uniformly distributed over the interval 5 to 19

minutes with variance %2. In a study conducted by the surgery, the waiting times of 10

samples of 30 patients each, were recorded.

(a) Find the mean waiting time of all patients at this surgery.

(b) Describe the probability distribution that best models the distribution of the means
of the sample waiting times.

(c) Find the probability that a randomly chosen:

(i) patient has to wait at least 13 minutes.

(ii) sample has a mean waiting time of at least 13 minutes.

(d) Find the probability that exactly two samples each have mean waiting times of at
least 13 minutes.

6. The amount of sugar dispensed by an automatic sugar dispenser is uniformly distributed

5

with mean 2 g and standard deviation 1—2 g. The dispenser was used » times and the

mean amount of sugar for the sample calculated. This exercise was repeated 20 times.

(a) Describe the probability distribution that best models the distribution of the sample
means.

(b) For (i) n=30, (i) n = 100; find the probability that a randomly chosen sample has a
mean not exceeding 2.01 g. Comment on your answers.

(c) Find n so that the standard error is no more than 0.01 g.

(d) Estimate the probability that when the dispenser is used 40 times, the total amount
of sugar dispensed does not exceed 81 g.

7. The amount of cooking salt dispensed by an automatic salt dispenser is uniformly
distributed with mean 3 g and standard deviation %g— g.

(a) Estimate the probability that when the dispenser is used:
(i) 30 times, the total amount of salt dispensed exceeds 89.7 g.
(ii) 100 times, the total amount of salt dispensed exceeds 299 g.
(b) When the dispenser is used » times, the standard deviation associated with the mean
J5

amount of salt dispensed per occasion is 500" Find n.

8. A radioactive substance emits particles randomly. The mean time interval between
successive emissions is 150 seconds with a variance of 150. Assume that the particles are
emitted independently and no two particles are emitted at the same time.

(a) Estimate the probability that:
(1) the time taken to record 50 successive emissions exceeds 124 minutes
(ii) no more than 252 minutes is required to record 100 successive emissions.
(b) The probability that the time taken to record 50 successive emissions will exceed
k minutes is approximately 0.05. Find £.
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9. The time interval between successive customers conducting transactions through an
automatic teller machine (ATM) has mean 2 minutes with variance 2. The ATM log
records the number of customers accessing the machine.

(a) Estimate the probability that:
(1) the time taken to record 40 successive customers exceeds 82 minutes
(i1) no more than 199 minutes is required to record 100 successive customers.

(b) The probability that the time taken to record 50 successive emissions does not exceed
k minutes is approximately 0.1. Find %.

10. The discrete random variable X has mean 0.15 and variance 1.275. Samples of 50
observations of X are taken and X the mean of each of the samples calculated.
(a) Find the probability distribution for X (b) Find P(X<0.18] X >0.15)
(c) Of 50 samples, each with 50 observations of X, how many are expected to have
sample means less than 0.18.

11. The random variable X has probability density function P(X = x) = T% for
V33

x=1,2,...,9,10. The standard deviation for X is - Samples of 50 observations of

X are taken and X the mean of each of the samples calculated.

(a) Find the probability distribution for X .

(b) Find: (i) P@A<X<6) (i) P(4 < X <6)

(c¢) Of 100 samples, each with 50 observations of X, how many are expected to have
sample means between 4 and 6 inclusive.

12. The binomial variable X has parameters n = 20, p = 0.35. Samples of 50 observations of
X are taken and X the mean of each of the samples calculated.
(a) Find the probability distribution for X .
(b) Find: (i) P(6<X<7) (i) P(6< X <7).
(c) Of 100 samples of 50 observations of X each, how many would have sample means
between 6 and 7 inclusive.

13. An eight sided die (with faces numbered 1 to 8) is rolled 36 times.

Define X: No. obtained on one roll of the die. The standard deviation for X = @

Define X : the mean of the 36 numbers obtained.

(a) Find the probability distribution for X.

(b) Find the probability distribution for X .

(c¢) Find the probability that for any randomly chosen sample of 36 rolls of the die,
the mean of the sample is between 2 and 5 inclusive.

(d) Find the probability that in 20 sets of 36 rolls of the die, at least 18 sets would
have sample means of between 2 and 5 inclusive.
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14. A six sided die (with faces numbered 1 to 6) is rolled » times.

Define X; No. obtained on one roll of the die. The standard deviation for X = N105 .

6
Define X : the mean of the » numbers obtained.
(a) Find the probability distribution for X stating its mean.
(b) For n = 49, state the probability distribution for X .
(c) Find the probability that for any randomly chosen sample of 49 rolls of the die,
the mean of the sample is between 1 and 3.
(d) Find # so that the standard deviation for X is no more than 0.5.

15. Tt is known that 10% of biros sold by a Two Dollar Shop are defective. These biros are

sold in packs of 50.

(a) Find the mean number of defective biros in a randomly chosen pack, stating its
accompanying standard deviation.

(b) Find the mean and standard deviation for the sampling distribution of the mean
number of defective biros per pack.

(c) Find the probability that for any randomly chosen pack of 50 biros, the mean number
of defective biros in the pack is between 4.5 and 5.5 inclusive.

(d) Find the probability that of 100 packs of 50 biros each, there are at least 90 packs
with mean number of defective biros per pack between 4.5 and 5.5 inclusive.

16. A box has 7 green balls and 3 red balls. Three balls are drawn without replacement from
this box and the number of green balls noted. This procedure is repeated 50 times to

form a sample of 50 observations. Let X: No. of green balls drawn and let X : The

mean number of green balls in the sample of 50. The standard deviation for X is ll

*(a) Find the probability distribution for X stating its mean.
(b) State the probability distribution for X .
(¢) Find the probability that for any randomly chosen sample of 50 observations of X,
X is between 1 and 2 inclusive.

19.3 Simulations of a Sampling Distribution of Sample Means

¢ As mentioned earlier, a set of b samples each of size » will form a frequency
distribution of sample means of sample size 7.
e As b — o, the frequency distribution approaches the sampling distribution
of sample means of sample size 7.

e For n > 30, the sampling distribution of sample means is approximately

: _ c
normal with mean p and standard deviation —.

Jn

o Hence, for sample size » > 30 and for large b, the frequency distribution
of sample means of size » should exhibit the behaviour of its
sampling distribution.
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Example 19.8
Consider a frequency distribution of 1 000 sample means, calculated from 1 000 samples each

containing 100 observations of a random variable X with mean 10 and standard deviation 2.

(a) State the approximate distribution for X , the sampling distribution of sample means
of sample size 100.
(b) State the approximate distribution of the frequency distribution given.

Solution:

(a) As sample size 100 > 30, by the Central Limit Theorem:
X has an approximate normal distribution with mean 10

and standard deviation 2 =0.2.

100

(b) As the number of samples is large, the frequency distribution tends towards
the sampling distribution of sample means of size 100.
Hence, the frequency distribution of the 1000 sample means
has an approximate normal distribution with mean 10 and standard deviation 0.2.

Example 19.9

Consider a frequency distribution of 5 000 samples means, calculated from 5 000 samples
each containing 200 observations of a binomial variable X with parameters 20 and 0.4.

(a) State the approximate distribution for X, the sampling distribution of sample means
of sample size 200.
(b) State the approximate distribution of the frequency distribution given.

Solution:

(a) The binomial variable X has mean =20 x 0.4 =8

and standard deviation = v20x0.4x0.6 = /4.8 =2.1909
As sample size 200 > 30, by the Central Limit Theorem:
X has an approximate normal distribution with mean 8

and standard deviation 4.8 =().1549.

V200

(b) As the number of samples is large, the frequency distribution tends towards
the sampling distribution of sample means of size 200.
Hence, the frequency distribution of the sample means
has an approximate normal distribution with mean 8 and standard deviation 0.1549.
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19 The Central Limit Theorem

T'de
é& ]% Hands On Task 19.1 (For Casio ClassPads Only)

In this task, we will use a Casio ClassPad to simulate a frequency distribution of b sample
means calculated from b samples each containing 7 observations of a random variable, and
explore the behaviour of the frequency distribution.

1. We will use the program wizard to write a simple program to perform the simulation
Tap the Program Wizard.

W EdtRun = X}
I Folder: [main 1=l |

In the Program screentap —— |
to start a new file (program).

Give the new file a name, e.g. Sim01.

Note down the parent folder, e.g. “Main”.

In the program editor, type the contents of the
accompanying screen dump.

Tap to save the program.
Tap to exit the program em 1

[ ] . -
e Tap to run the program. \&dlt I:tr_l =2 MIS IETI
\ B[O AR [ X [EE]
~ Edit Run 5 SimA1 Bl
%lr'Text g ‘s .
ppa— nput Ny "Size o ample"
Folder:main I~] Input by"Mo. of Samples”
Mame: [EimB1 =] Input r,"'n=?""Bindn.p3"
) Input p,y"p=? (B{p<13","Binc
Parameterz[[__ ] nap"
seqlx,xs1,b2%a
For 1% To b
. ) randBindr.pan2>a
¢ This program will: meantxl>alil
e simulate b samples each Print x
containing » observations of r.::lfitstl
a Binomial variable with Print a
parameters 7 and p. StatGraph 1,0nsHistogram,L
e calculate the mean of each g:-all.-:.ét at
sample.
e display the frequency I
distribution of sample
means as a list as well as
a histogram.
Program Editor 11|
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2. Simulate 100 samples of 5 observations of a Binomial variable with parameters 10 & 0.2.
e When the program has simulated the collection of 100 samples of 5 observations

and formed the frequency distribution of the

sample means, a pop-up screen will appear. Set Interval
o The screen allows you to set the drawing HStart: —
parameters of the frequency histogram. HStep: (8.
e Choose HStart: 0 LOK_] [Cancel]
HStep: 0.1
e Tap OK
e The accompanying screen dump shows the [ ¥ Zoom Analysis Calc ¢ |
final screen. EERLE & JER NI ] [
e Tap anywhere on the graph screen. 20
e You can analyse the graph by tapping the
“Analysis” Menu and selecting the 2
required tool. A
® You can also calculate the mean of the Hn H I H 0o
simulated distribution and its associated -3
standard deviation using the “Calc” Menu. I |
¢ You can have a whole lot of fun!

3. Simulate 100 samples of 50 observations of a [ Zoom Ao Calc # )|
Binomial variable with parameters 10 & 0.2. EE[E S R RS D
Be patient! g 5

: 2
W_EI. 8
§ -4
I
) Sirnd2 i

4. Create and save a new program “Sim02” to ClrTet il

simulate b samples each containing » observations Input ny"Size of Sample"
. . . . Input bs"Mo. of Samples"
of a uniform variable in the interval d <x <e. Ir,p._,E ds "Start", "Uniform Int
; erval”
o E?(plpre jthe shape of the histogram of the Tnput e, "End”, "Uniform Inte
distribution of the sample means for rval”
. seqiryx,l.b2>a
various values of b and » for a common Fcrd E 5 l-:rc, 5
randList{nsdyerx
set of values for d and e. il A
Print =
MNext
arListl
Print a
StatGraph 1. On,Histogram,L
istlsl
DrawsStat

5. Use these two programs to explore the principles of the Central Limit Theorem.
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19 The Central Limit Theorem

Exercise 19.3

1.

Consider a frequency distribution of 5 000 sample means, calculated from 5 000 samples

each containing 100 observations of a random variable X with mean 20 and standard

deviation 3.

(a) State the approximate distribution forX , the sampling distribution of sample means
of sample size 100.

(b) State the approximate distribution of the frequency distribution given.

Consider a frequency distribution of 4 000 sample means, calculated from 4 000 samples

each containing 200 observations of a random variable X with mean 100 and standard

deviation 14.

(a) State the approximate distribution forX , the sampling distribution of sample means
of sample size 200.

(b) State the approximate distribution of the frequency distribution given.

Consider a frequency distribution of 10 000 sample means, calculated from 10 000
samples each containing 50 observations of a random variable X. The frequency
distribution has mean 50 and standard deviation 5. Determine the approximate

distribution for X , the sampling distribution of sample means of sample size 50.

Consider a frequency distribution of 2 000 samples, each containing 100 observations of

a binomial variable X with parameters 12 and 0.25.

(a) State the approximate distribution for X, the sampling distribution of sample means
of sample size 100.

(b) State the approximate distribution of the frequency distribution given.

. Consider a frequency distribution of 1 000 sample means, calculated from 1 000 samples

each containing 400 observations of a binomial variable X with parameters 10 and 0.2.

(a) State the approximate distribution for X, the sampling distribution of sample means
of sample size 400.

(b) State the approximate distribution of the frequency distribution given.

10 000 samples each containing 80 observations of X, a variable uniformly distributed in

the interval [10, 20]. A frequency distribution of the sample means if formed.

(a) Calculate the mean and standard deviation for X.

(b) State the approximate distribution for X, the sampling distribution of sample means
of sample size 80.

(c) State the approximate distribution of the frequency distribution stated.

2
The random variable X has probability distribution function f(x) = 3—;— for-1<x<1.

8 000 samples each containing 120 observations of X were taken and a frequency
distribution of the sample means formed.

(a) Calculate the mean and standard deviation for X.

(b) State the approximate distribution of the frequency distribution of sample means.
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20 Point & Interval Estimates for p

20.1 Point Estimate for population mean p

o Assume that we need to find the mean height of all year 12 students in a particular
state. Short of “rounding up” all the year 12 students in the state and measuring
their heights, we could use samples to estimate the mean height of these students.

o A sample of n year 12 students is obtained, and the mean of this sample

x
x = = may be used to estimate the mean height of all year 12 students in
n

this state.
e In general, where the population mean p is unknown, a sample mean (the
mean of one sample) may be used in its place.

e As the sample mean is a single number, it is referred to as a point estimate (single-
value estimate) for the population mean .

20.2 Point Estimate for population standard deviation

e The standard deviation o for a set of n scores with mean x measures the variability

of the scores about the mean and is calculated using the formula
1 ) 1 2\ T2
G=——1’ (x—x) =— ( x )—(x .
Jn Z ) In Z )

o Assume that the standard deviation ¢ of a population of scores is not known.
A sample of # scores is extracted from this population.
o To estimate the standard deviation o of this population from the sample of
n scores, the value derived from the formula

s = —\/%,/ Z:(x—;)2 is used.

« This is referred to as the sample standard deviation for
the sample of » scores.

e In summary:
e To describe the dispersion of n scores about its mean,

. 1 -2 .
the standard deviation 6 = — x—x)° is used.
AR

e To estimate the standard deviation of the population set from which a
sample of n scores is drawn, the sample standard deviation

s= \/% \ Z:(x—;)2 is used.
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Example 20.1

To estimate the mean height and its associated standard deviation of year 12 students in a
school, a random sample of 10 students were selected. The heights (cm) of these students
were: 179, 165, 168, 159, 165, 170, 158, 163, 167 & 164. With the help of a calculator, use
this sample to find point estimates for the mean height and its associated standard deviation,
of all year 12 students in this school.

Solution:
~r Edit Calc SetGraph
From calculator: B e —
: ik [
The sample mean = 165.8 cm. listl stz [ists  [istd st s
. . 1 179 .
The sample standard deviation = 5.94. IRl Stat Calculation B3
3| 168 One-Yariable
3 1%
(™ =
. . 1709 £ =165.8
Hence, an estimate for the mean height of year 12 \2\}3; B cigs
students in the school = 165.8 cm and g er 2;\A :g;agzgss
. . . . 11 =
an estimate for its standard deviation = 5.94 cm. 12 minx =158
! z
12
Note: -

o In most CAS calculators, the sample standard deviation is s, . 0. is the standard deviation for this set.

20.3 Sampling distributions of sample means when ¢ is not known

o Consider a sampling distribution of sample means of sample size .
The sampling distribution share the same mean p as the population mean.
L . iy . . O :
The standard deviation of the sampling distribution is T where o is the
n
standard deviation of the parent.

e When the population standard deviation ¢ is unknown, ¢ may be estimated
by a sample standard deviation s if:
« the parent population is normal e or the sample size 7 is large (=30).

¢ Combining this with the Central Limit Theorem, if the sample size  is large (= 30)
then, the sampling distribution of means will have an approximate normal

e . . s
distribution with mean p and standard deviation —.

Jn

2
S s
o Thatis, if n>30, X ~N(p, (—-—j )
Jn
where s is a sample standard deviation estimate
for the population standard deviation G.
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Example 20.2

A random variable X has mean 50. 500 samples of 100 observations each are taken of X and
X the means for each sample calculated. One of the samples of 100 observations of X has a
sample standard deviation 2.8. Use this information to describe the probability distribution
for X and the frequency distribution of sample means.

Solution:

The population standard deviation is not known and is estimated
by the sample standard deviation of 2.8 provided.

As the size of the sample = 100 > 30,
X is approximately normally distributed with mean = 50

and standard deviation = ﬁ =(.28.

V100

As the number of samples is large, the frequency distribution tends towards

the sampling distribution of sample means of size 100.

Hence, the frequency distribution of the 500 sample means

has an approximate normal distribution with mean 50 and standard deviation 0.28.

20.4 Probability distribution of >~
s
%)
o Consider b samples each with » observations of a random variable X with mean p.

o For each sample, the sample mean x, the sample standard deviation s
X—p

7
Jn
L X—-pu
s Hence, we have a distribution of (—
L)

Jn

o It can be shown that for large n (n > 30), this distribution
will be approximately standard normal. That is, for n > 30:

and the statistic is calculated.

XZE N, 1),
S
%)
o As the number of samples b increases in size, the frequency distribution of

—H will tend towards the distribution of X—p

© O.T Lee 290



20 Point & Interval Estimates for u

Example 20.3

2 000 samples of 100 observations each are taken of a random variable with probability
4-x for 0 <x <4. For each sample, the statistic X-p i
s
%)
calculated, where p is the mean for X, and s is the sample standard deviation.
(a) Find the mean and standard deviation for X.
(b) Describe the distribution for X.

density function f(x)=

S

(¢) Describe the distribution for X-u and the frequency distribution of Fk
s
(%)

&

Solution:
T (4-x 4
(a) Mean for X =E(X) = Ixx dx = —.
8 3
0
4 -
5 ) \J\xx (4;2!) 4
Variance for X = E(X ) - [E(X)] 8
4 2 4
=jx2x(4;xjdx~@ . 3
0 J\xzx%dx
_8_16_8 @
379 9 3
8 .4
Hence, standard deviation = 2—\3/2 ) 37437 2
22
3
(b) As sample size n =100 > 30, 2""{2—,«’1@
< . . 4 3
X is approximately normal with mean = 3 _\‘{E—.
15
232

and standard deviation = | —2— | = ﬂ

V100 15

(¢) Asn=100>30 and b is large, the distribution for Xou
s
&

will be approximately standard normal.

and the frequency distribution of (x—~i

)
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(For Casio ClassPads Only)

T he
E~ ]ﬁx_ Hands On Task 20.1

In this task, we will make use of a Casio ClassPad to observe how the variable

X-p

&

tends

towards a standard normal distribution.

1. Create and save a new program “Sim03” to:

SimBs TN

e simulate b samples each containing n
observations of a Binomial variable X
with parameters 7 and p.

e calculate X and s, respectively the mean
and sample standard deviation of each
sample and hence calculate the value

ClrText

Input ny"Size of Sampla"

Input by"Mo. of Samples"

Input ra"n=""2"Binin, p>"

Input pa"p=7? (BLp<12""Bindn, pX"
seqixsxy1.bd>a

For iz To b

randBin{rypsnizx
tmeantx)—rxpirRndstdhevixi>alil

Print x
X—pn Mext
of -——= for each sample. ayListl
s Print a
— StatGraph 1.0nyHistogram,Listl,1
\/; DrawStat
e display the frequency histogram for
X—p
(LJ |
Jn
2. Create and save a new program “Sim04 Emoa T
to: ClrText

Input ns"Size of Sample"

Input by"Mo. of Samples"

Input d,"Start","Uniform Interwal®

Input ey "End"s "Uniform Interwal"
seqlxsxs 1.b23>a

For 1% To b

randList{nsd,elsx

tmeantxr-8.53x(d+er ) xn/stdDevix2>alil

e simulate b samples each containing #
observations of a uniform variable in
the interval d<x <e.

e calculate X and s, respectively the

mean and sample standard deviation Print x
MNext
of each sample and hence calculate a>Listl
X— m Print_a i .
the value of for each sample. Eﬁ:ffs"faih 1:On, Histogram, List1, 1

&

e display the frequency histogram for

&)
Jn
3. Use these two programs to explore the shape of the frequency histogram for

2R 16 observe how o~ tends towards a standard normal variable for large values
s s
) %)

of n (n>30).
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20 Point & Interval Estimates for u

Exercise 20.1

1. To estimate the mean mass of year 12 students in a school, a random sample of 20
students were selected. The masses (kg) of these students were:
63.4,54.6, 56.5,69.2, 59.4, 61.5, 45.6, 66.7, 49.8, 57.3,
62.4,63.1,64.2,58,7,56.1,55.3,59.4,62.4,67.3,57.8
(2) Find the mean and sample standard deviation for this sample.
(b) Use this sample to find an estimate for the mass and its associated standard deviation,
of all year 12 students in this school.

2. To estimate the daily travelling times to school, 60 Travelling Time No. of
students were surveyed. The results are shown in the (mins) Students
accompanying table. 0<ts<5 5
(a) Use this sample to estimate the mean daily travelling 150<<tt5<1105 ig

times to school for al/ the students in this school, 15<1<20 10
together with its standard deviation. 20<t<25 5
(b) Hence, state the probability distribution for the 25<t<30 3
sample mean daily travelling times to school. 30<t<60 2

3. A random variable X has mean 100. 1 000 samples of 200 observations each are taken of
X and X the mean for each sample calculated. The sample standard deviation of one of
the samples of 200 observations of X has a sample standard deviation 15. State the
probability distribution for X and the frequency distribution of sample means.

4. The diameters of 5 000 samples of 50 ball bearings each were measured. The mean
diameter of one of the samples is 10 mm with a sample standard deviation of 0.1 mm.
State the approximate probability distribution for X and the frequency distribution of

sample means.
5. 2 000 samples of 100 observations each are taken of a binomial variable with parameters

6 and —é— For each sample the statistic (3(——“)/(%) is calculated, where p is the mean for
n

X, and s is the sample standard deviation.
(a) Find the mean and standard deviation for X and state the distribution for X
X-p

%)

6. 2 000 samples of 100 observations each are taken of a variable distributed uniformly in

(b) Describe the probability distribution for

the interval [0, 10]. For each sample the statistic (i—p)/(%j is calculated, where 1 is
n

the mean for X, and s is the sample standard deviation.

(a) Find the mean and standard deviation for X and state the distribution for X

(b) Describe the distribution for X8 and the frequency distribution of ——t

) #
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7. 30 observations of a random variable X with mean p = 1 are given below.

0 0 2 2 1 0 2 1 1 1
1 1 1 2 0 1 0
1 3 0 2 0 0 3 0 1 2

(a) Calculate the mean x , standard deviation and sample standard deviation s
for this sample.

(b) For this sample, calculate the corresponding value of the statistic X
S
)

8. 30 observations of a random variable X with mean p = 10.5 are given below.

13 9 11 8 4 10 13 12 2 11
13 11 9 2 8 13 15 7 19 18
16 8 12 12 18 20 7 20 2 19

(a) Calculate the mean x , standard deviation and sample standard deviation s
for this sample.

(b) For this sample, calculate the corresponding value of the statistic X

)

TN

20.5 Interval Estimates

e When different samples (unbiased) are taken, estimates for the population mean
will vary. This is a disadvantage of using point estimates.

¢ Interval estimates for the population mean involve using a sample to provide an
interval of values for estimating the population mean.

20.5.1 Confidence Intervals for p

¢ A confidence interval for u:
o uses the mean of a sample X as a point estimate for p,
 provides a margin of error (+ e) for the point estimate X,
thereby providing an interval of possible values forp, X —e<p <X +e,
« and a statement of confidence in percentage terms that p
would lie within the interval of values calculated.
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20 Point & Interval Estimates for u

20.5.2 Calculating Confidence Intervals

Let the random variable X be normally distributed with mean p and standard
deviation 5. Samples of n observations are taken of X. Then, the sampling
distribution of the sample means X will be normally distributed with mean p and

standard deviation (standard error) % )
n

Consider P(u—k< X <p+k)=0.90.

= P —k <7 s—k—- =0.90.
o o
3 (&
‘ T
But —— = 1.645. — k=1.645 x (ij o
& I
Jn

P(u—1.645x | -S| <X <p+1.645 i] =0.90. I
= P x(ﬁj_ <u x(&) M
(D) can be rearranged to give:
P(X — 1.645 x i) <pu< X +1.645x [iJ =0.90. 11
( (ﬁ " 2 )) a

(1D) states that there is a 90% probability that p will lie in the interval

X +1.645 (%J . If X is a point estimate for p, then, we are 90% confident that the
n

interval x £ 1.645 (%j will contain p. This interval is known as the 90%
n

confidence interval for .

Similarly, the 95% confidence interval for p is x = 1.960 (%)
n

Likewise, the 99% confidence interval for pis x +2.576 (%)
n

In general, if X is normally distributed and o is known, a 100c % confidence

Jn

Jn

interval for p is given by ¥ — z_ X <p<xFzXx

where P(— z, < Z< zc) =c.

If X is not normally distributed and ¢ is known, for sample sizes n > 30:
an approximate 100c % confidence interval for p is given by

c
Jn

N

where P(-z <Z<z )=c.
[ c

¥ —z X <u<x+z X
c c

In each of the above two cases, if o is not known, the sample standard deviation s
can be used as a point estimate for o.
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e Clearly, different samples will yield varying interval estimates of the same
confidence level 100c % for p. However, from repeated sampling, 100c % of the
interval estimates obtained will actually contain p.

e That is, the confidence level of 100c % refers to the percentage of intervals
obtained through repeated sampling (of the same size) that will contain p.

e In summary, a 100c % confidence interval for p:
» uses the mean of a sample X as a point estimate for p,
c

Jn

- : . — c
thereby providing an interval of possible values for p, ¥ + z, X T ,
n
« provides a statement of confidence in percentage terms that through repeated
c

Jn

e provides a margin of error (+ z_x ) for the point estimate x,
c

sampling, 100c % of intervals x + z, % obtained will contain p.

e The table below summarises the different confidence intervals for p.

Parent Distribution
Confidence Normal Mean Non—-Normal Mean p.
Intervals K with sample size # > 30
o known ¢ unknown o known G unknown
90% X + 1.645 x (%] X 4 1.645 x % X + 1.645 x (%] X +1.645 x [%j
n n n n
95% X+1.960x || | ¥£1960x || | ¥ £1960x || | ¥ £1.960x | -
Jn Jn Jn Jn
99% X +2.576 x [%J X +2.576 x % X +2.576 x (%J X +2.576 % (%J
n n n n
— o — s - c — s
100c % X = ZC X (ﬁ) X £ ZC X (—\/-;—J X % Zc X [ﬁj X =+ ZC X (-\/—;J
100(1 — o) Xtz X(—G—J X £z x(i} X + z x(i] X +z x(i)
% 2 \n g n s\ %

® NotethatP(-z, <Z<z )=candP(-z, <Z<z )=1-o.
2 2
e If X is not a normal variable, for » > 30, the confidence interval is at best an
approximate confidence interval. Similarly, if the sample standard deviation is

used as an estimate for the unknown population standard deviation o, for n > 30,
the confidence interval is at best an approximate confidence interval.

¢ Note that the higher the level of confidence, the wider the confidence interval.
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Example 20.4

The random variable X is normally distributed with mean p and standard deviation 12.
A sample of 25 observations of X was taken. The mean value of these observations X = 60.1
Use the sampling distribution of the sample means X to find a 99% confidence interval for p.

Solution:

122
25
For a 99% confidence interval for p.:
P(n—k< X <p+k)=0.99.

Since X is normal, X ~ N(u,

= P(__k <Z< i) =(0.99. x1=-2.575829 x2s2. 5758293
2.4 24 In ]
But =% =2.576. = k=6.1824 .
2.4 _ problg.99
= P(u-6.1824< X <p+6.1824)=0.99. oL
P(X -6.1824<pu< X +6.1824) = 0.99.

Taking the sample mean X = 60.1, a 99% confidence interval for p is:
60.1 - 6.1824 <nu<60.1 +6.1824
53.9<u<663.

Example 20.5

The random variable X is normally distributed with mean p and standard deviation 12.
A sample of 25 observations of X was taken. The mean value of these observations X = 60.1
Use a CAS/graphic calculator to find a 99% confidence interval for p.

Solution:

2
Since X is normal, X ~ N(y, %).

Take the sample mean X = 60.1 as a point estimate for L.

2 | 2 & || X ]
?
G- 1
Type [Mterval 7] Vel Lower [53.51861
Upper [66.28199
[One-Sample ZInt | z[ge.1 z[éd. 1
OList ®Yariable n(25 n 25.

Hence, a 99% confidence interval for p is: 53.9<nu<66.3.
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Example 20.6

The random variable X has mean p and standard deviation o. A sample of 50 observations of
X was taken. The mean value of these observations X = 32.6 with a sample standard
deviation of 3.4. Find an approximate (i) 95% (ii) 98% confidence interval for p.

Solution:

As the sample size 7 = 50 > 30, X is normally distributed.
Use x =32.6 as a point estimate for u and s = 3.4 as a point estimate for o.
3.4

(a) Hence, a 95% confidence interval for p is 32.6 £ 1.96 x =32.6+0.94.
50
(b) P(-z, <Z<z )=c = z,6=2326 [[rvNermCorCeT 8. 98, 1,09 2
—-2.32635
Hence, a 98% confidence interval for p is: 2.326%3.4/7(50
34 1.11842
32.6£2326 x— =32.6+1.12

J50

Example 20.7

The normal variable X has mean p and standard deviation 11.8. A sample of # observations
of X was taken. The mean value of these observations x = 50.2.
(a) Find n if the error for the 95% confidence interval of y is not to exceed 2.
(b) For n =25, find the level of confidence for a confidence interval for u
with an error of + 5.

Solution:

(a) Since X is normally distributed, the error for the 95% confidence interval is

11.8
e=+196%| —|.

Hence, for margin of error < 2:

11.8
196 X [_j < 2 solue(1.96><11'852sn) =
\/; > 134 s \'{n_ {né133.72619}ﬂ
= n>134.
11.8
(b) e=+5 = zcx(—J=5
J25 .
25/11.8 el
z.=2.11864 s gy e
But P(-2.11864 < Z < 2.11864) = 0.9659. oo i1 e 1’:]%583
Hence, level of confidence is 96.6% n '

Note:
o The error for a confidence interval is the difference between the point estimate X and the
true mean p.
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Example 20.8

The random variable X has mean p and standard deviation ¢. A large sample of n
observations of X was taken. The mean value of these observations X = 670 with sample
standard deviation 54.5. Find n if we wish to be 99% confident that the sample mean will not
differ from the true mean by more than 20.

Solution:

Since the sample size is large, the sampling mean X is approximately normally distributed.
Using X as the point estimate for p and s as the point estimate for c;
54.5

n

an approximate 99% confidence interval is 670 = 2.576 x

Hence, the magnitude of the margin of error :

2.576 x >4 <20.

7

= n>50

Alternative Solution:

Since the sample size is large, the sampling mean X is approximately normally distributed.
Using X as the point estimate for u and s as the point estimate for c;

P(-20 < X <20)—099
< Xou )=0.99
(54 5) ( j (54 5)
P20 <7< 20 y-099
54.5 54.5
) )
But P(-2.576 <7 <2.576) =0.99
Hence, A =2.576
345
&3
= n=50.

For n = 50, the maximum difference of 20 between X and p is achieved.
Hence, if the difference is to be no more than 20, n > 50.
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Example 20.9

The mean amount of time spent watching television by 5 year olds in a certain country is
with standard deviation . Samples of size n of 5 year olds were taken, and one such sample
yielded the mean watching time as 180 minutes with sample standard deviation 45 minutes.
(a) For n =100, find a 90% confidence interval for p.

(b) Find # if the margin of error for a 99.9% confidence interval for p is less than 20 minutes.

Solution:

(a) Since the sample size is large, the sampling mean X is approximately normally
distributed. Using X as the point estimate for p and s, as the point estimate for o;
45

V100

= 180 + 7.4 minutes.

the approximate 90% confidence interval is 180 + 1.645 x

(b) Assume that # > 30. Hence, X is approximately normal.
P(-3.2905 < Z <3.2905) = 0.999.

Hence, margin of error for a 99.9% confidence interval e = 3.2905 x Rl .

n

= 3.2905X£<20 = n=>55

7

Example 20.10

The height X of year 12 students in a certain state is normally distributed with mean p and

standard deviation . The mean height of a sample of 100 students is 165.4 cm with a sample

standard deviation of 4.8 cm. Use the sample mean and sample standard deviation as point

estimates for p and o respectively

(a) The probability that the height of the next student chosen lies in the interval
L—k<X<p+kis0.95. Determine the approximate value of k.

(b) Find an approximate 95% confidence interval for p.

(c) Discuss the interpretation of your answers in (a) and (b).

Solution:
(a) Usep=1654 and o =~4.8
2 —
Hence, X~N(1654,48) = %gﬁl ~N(0, 1).
P(165.4 - k<X <1654+k)=0.95
L opk X-1654 koo
4.8 4.8 4.8
- <z< K y—00s
4.8 4.8
= i=1.96 = k=9.408.
4.8

solve (normCDf( 165, d—ar, 164, 5+ar, 4.2, 165.42=0. 95, a) |[*
{x=9.899623168%
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4.8

(b) Approximate 95% confidence interval for p1s 165.4 £ 1.96 x .
\100

That is: 164.5<1<166.3 cm

(¢) In (a), the 95% value refers to the probability that the height of the next student chosen
will be between a certain interval. Whereas, in (b), the 95% value refers to the
percentage of intervals calculated that will contain p.

Notes:
e [t is incorrect to interpret the confidence interval as implying that the probability
that u lies between 163.6 cm and 165.4 cm is 95%.
o As pis a constant, it is either inside the interval or it is not.
That is, the probability that u is in the given interval is either 0 or 1.

Exercise 20.2

1. The random variable X is normally distributed with mean p and standard deviation 4.8.
A sample of 20 observations of X was taken and the mean value x = 33.7.
(a) State the probability distribution for the sampling distribution for X .
(b) Find a (i) 99% (ii) 92% confidence interval for p.

(c¢) Find the size of the next sample of observations of X if the error margin for a 95%
confidence interval for p is no more than 2.

2. The random variable X is normally distributed with mean p and standard deviation .
A sample of 16 observations of X was taken. The mean value of these observations
X =201.4 with a sample standard deviation of 14.1.
(a) State the probability distribution for the sampling distribution for X.
(b) Find an approximate (i) 90% (ii) 97% confidence interval for p.
(c) Find the size of the next sample of observations of X if we wish to be 95% confident
that the estimate for the mean is not to differ from the true mean p by more than 4.

3. The random variable X has mean p and standard deviation 1.2. A sample of 100
observations of X was taken. The mean value of these observations x =5.4
(a) State the probability distribution for the sampling distribution for X .
(b) Find an approximate (i) 95% (ii) 99.5% confidence interval for p.
(c) Find the size of the next sample of observations of X if the probability that the
estimate for the mean is not to differ from the true mean p by more than 0.2 is 0.9.
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4. The random variable X has mean p and standard deviation 6. A sample of 80
observations of X was taken. The mean value of these observations X =20.7 with
sample standard deviation s, = 3.1.

(a) Find an approximate (i) 90% (ii) 99.9% confidence interval for p.
(b) Another sample of n observations of X was taken. Find # if the probability that the
error between the sample mean and the true mean is no more than 1 is 0.97.

5. The time (seconds) taken to complete a certain task is normally distributed with mean p
and standard deviation 35 seconds. A sample of size » such completion times has mean
485 seconds.

(a) Find the probability that: (i) the time to complete the task exceeds 500 seconds.
(i1) a sample of size 25 has a mean completion time that exceeds 500 seconds.

(b) Forn=100, find a (i) 90% (ii) 92% confidence interval for p.

(c) Find n if the error for a 99.5% confidence interval for p is less than 20 seconds.

6. The amount of water used per shower at Julia’s home is normally distributed with mean p
and standard deviation ¢. The amount of water Julia used for her shower was measured
over n occasions and the mean amount of water used per shower was 125 litres with a
sample standard deviation of 12 litres.

(a) Find the probability that for the next sample of 40 showers the total amount of
water used is less than 5.12 kilolitres.

(b) For a sample of 40 showers, find a 99% confidence for p.

(c¢) Find # if the robability that estimate for p is in error by no more than 5 litres is 97%.

7. The waiting time (minutes) at a pharmacy drug dispensing counter is uniformly

distributed with mean p and variance 7745. The waiting times of a sample of 30 customers

were recorded and the mean waiting time for this sample is 12 minutes.

(a) Find the probability that the next sample of 30 customers will have a mean waiting
time not exceeding 11 minutes.

(b) For a sample of 30 customers, find a 95% confidence interval for p.

(c) For another sample of 30 customers, find the level of confidence if the confidence
interval for p has an error of + 1 minute.

8. The amount of chemical X dispensed per use by a dispenser is uniformly distributed with
mean p g and standard deviation ¢ g. The dispenser was used 90 times and the mean
amount of chemical X dispensed per use was 2.5 g with sample standard deviation 0.3 g.
(a) Find the probability that the total amount of chemical X dispensed when used 90

times will be no more than 230 g.
(b) Find an approximate 99.5% confidence interval for p.
(c) Find the level of confidence for a confidence interval for p with error + 50 mg.
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9. A radioactive substance emits particles randomly. The mean time interval between
successive emissions is p seconds with a standard deviation of 6 seconds. Assume that
the particles are emitted independently and no two particles are emitted at the same time.
It took a total of 5 hours and 5 minutes to record a sample of 100 successive emissions.
(a) Find an approximate 95% confidence interval for p
(b) Find the level of confidence for a confidence interval for p with error + 1 second.

(c) How large should the next sample of emission time intervals be if we wish to be 80%
confident that the estimate for the mean is not to differ from the true mean p by more
than 1 second?

10. The time (X minutes) that Georgia takes to drive to school is normally distributed with
mean p and standard deviation . From a sample of 50 trips made, the mean time was 30
minutes with a sample standard deviation of 1 minute. Use the sample mean and sample
standard deviation as point estimates for p and o respectively.

(a) The probability that the travel time for Georgia’s next trip falls in the interval
L—-k<X<p+kis0.90. Determine the approximate value of .

(b) Find an approximate 90% confidence for p.

(c) Discuss the interpretation of your answers in (a) and (b).

11. A factory manufactures precision screws with mean length p mm and standard deviation
o mm. A sample of 500 screws has a mean length of 10.00 mm with standard deviation
0.1 mm.
(a) Calculate approximate 90%, 95% and 99% confidence intervals for p.
(b) A second sample of 500 screws had a mean length of 10.01 mm. Use your answers
in (a) to determine if there is cause to infer that the second batch of screws are longer
than those in the first sample

12. A factory packs sugar in bags with mean mass p g and standard deviation ¢ g. A sample
of 300 bags of sugar had a mean mass of 1000 g with standard deviation 2 g.
(a) Calculate approximate 90%, 95% and 99% confidence intervals for p.
(b) A second sample of 100 bags of sugar had a mean mass of 999.8 g. Use your
answers in (a) to determine if there is cause to infer that the second batch of bags
are lighter than those in the first sample
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20.6 Level of significance

e Let X ~N(u, 02).

Samples of # observations on X are taken and X , the mean value of X for each
sample is calculated.

2

e Clearly the sampling distribution for X ~ N(y, o ).
n

S

That is, 5% of all values of X would lie outside the interval p + 1.960 x

Then 95% of all values of X would lie in the interval p + 1.960 x

NS

e Let X be the mean value of X for one of the samples taken.
c
Jn

that the sample mean X is significantly different
from the population mean p at the 5% level of significance.

o If X is outside the interval p + 1.960 x , then it is concluded

o If X is inside the interval p + 1.960 X—g—, then it is concluded

N

that the sample mean X is not significantly different
from the population mean p at the 5% level of significance.

e This is represented visually in the diagram below.
The shaded region is called the critical region.
If x falls inside this region, then it is significantly different from p at the 5%
level of significance.

5% of all values of X lie
within this interval

95% of all values of X lie
within this interval
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Example 20.11

The life of “Always Ready” laptop batteries is known to be normally distributed with mean
240 minutes and standard deviation 10 minutes. A random sample of 36 such batteries
yielded a mean life of 230 minutes. Determine with reasons if the mean life of this sample is
significantly different at a 10% level.

Solution:

Let X: Life of these laptop batteries. = X ~N(240, 102).

10°

—).

36

10% of all values of X will lie outside the interval 240 + 1.645 x

Then the sampling distribution X ~ N(240,
10

V36

=240+ 2.74.

Clearly X =230 lies outside this interval.

Hence, the mean life of this sample is significantly different from the true mean at the
10% level.

Example 20.12

The adult length of a species of fish is known to be normally distributed with length 75 cm
and standard deviation 15 cm. It is suspected that a random sample of 50 adult fish with
mean length of 80 cm belong to this same species.

(a) Determine at a 1% level of significance if this suspicion is true. That is, determine if

there is any significance difference between the mean length of this sample and the known
mean length at the 1% level.

(b) Determine the level of significance for the difference between the mean length
of this sample and the known length.

Solution:

(a) Let X: adult length of fish. = X ~N(75, 152).

15°

—).

50

1% of all values of X will lie outside the interval 75 + 2.576 x

Then the sampling distribution X~ N(75,

15

V50

=175+ 5.46.

Clearly X = 80 lies inside this interval.
Hence, the mean life of this sample is not significantly different from the true mean at

the 1% level. That is, at the 1% level of significance, there is no evidence to reject the
suspicion.

(b) The difference between the sample mean and the known mean =5 cm.

Hence, z. x b 5. = z,=2.357. ButP(-2.357<Z2<2.357)=0.98158.
V50

Hence, the sample mean and the known mean is significantly different at the
(1 -0.98158) x 100 = 1.8% level.
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Exercise 20.3

1.

The life of batteries for an e-book is advertised to be normally distributed with mean
1200 minutes and standard deviation 30 minutes. A random sample of 60 such e-books
was tested under similar conditions and the sample yielded a mean life of 1190 minutes.
Determine with reasons if the mean life of this sample is significantly different at a:

(a) 10% level (b) 5% level (c) 1% level.

The wing-span of a species of bird is known to be normally distributed with length 45 cm
and standard deviation 5 cm. A random sample of 30 similar looking birds were trapped
and the mean wing-span of the birds in this sample was measured to be 47 cm.
Determine with reasons if the mean life of this sample is significantly different at a:

(a) 10% level (b) 5% level (c) 1% level.

The marks of a mathematics aptitude test are normally distributed with mean 62 and
standard deviation 11. A group of 100 students had a mean mark of 65 for this test.
Determine with reasons if the mean mark of this sample is significantly different at a:
(a) 2% level (b) 8% level (c) 10% level.

The amount of sugar in a 1 kg pack is normally distributed with mean 1000 g with

standard deviation 1g. A sample of 200 such packs was tested and the mean weight of

this sample is 999.9 g.

(a) Determine with reasons if the mean weight of this sample is significantly different
at the 5% level.

(b) Determine the level of significance for the difference between the mean weight of
this sample and the known mean weight.

The amount of berry juice in a 3 L bottle is normally distributed with mean 2999 mL with

standard deviation 3 mL. A sample of » such bottles was tested and the mean amount of

juice in this sample is 2999.8 mL.

(a) For n= 50, determine the level of significance for the difference between the mean
amount of this sample and the known mean amount.

(b) Find n if this sample mean is to be significant at a (i) 5% level (ii)) 10% level.

The amount of fresh milk in a 2 L container is normally distributed with mean p and

standard deviation. A sample of 1 000 such containers was tested and the mean amount

of milk in this sample is 1998.5 mL with a sample standard deviation of 2 mL. A second

sample of 80 containers had a mean of 1999 mL with a sample standard deviation of

2mL. Use the mean and sample standard deviation of the first sample as estimates for p

and o respectively.

(a) Determine the level of significance for the difference between the mean amount of
milk in second sample and the known mean amount.

(b) How large should the next sample be if the sample mean of the next sample is to be
significant at the (i) 1% level (ii) 5% level.
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20.7 Simulating Confidence Intervals for the Population mean p

¢ Different samples will yield different interval estimates for p, for the same level of
confidence. For example, 500 samples will yield 500 interval estimates for p for a
given confidence level. If the confidence level is 90%, then theoretically, 90% of
the 500 intervals will contain the population mean p. In this section, we will use a
CAS calculator, to try to observe this phenomenon.

7'8e
ﬁ%y ]% Hands On Task 20.2 (For Casio ClassPads Only)

In this task, we use a Casio ClassPad to simulate the construction of confidence intervals for
the population mean p based on a normal variable with mean p and standard deviation c.

1. Create and save a new program “Sim05”.
This program will:
¢ simulate b samples each containing » observations of a normal variable
with parameters p and c.
e construct a 100c % confidence interval for p for each sample and display them
on the screen.

SimBs TN

ClrText

Input n."Size of Sample"

Input b."Mo. of Samples"

Input um."Mean","Population Parameters"
Input d."Std Dev","Population Parametetrs"
Input c"Level B<c{1", "Confidence"
invMNormCDEC"C"y a1, 80%d

Print "mean="

Locate 3B8,1.0

For 1% To b

randMormCds Lanl>x

Creantx}+dXd/ F(n)ymeantxi—-dxd /T {n> 13y

Frint v
Mext
e The accompanying screen dump shows mean=16a@
a simulation of 10 samples of 3 [[95.B0207575, 187, A203552]]
. a. © P 0 . [[96.48264647, 168, 4143589]1
observations each of a normal variable [[91.61837156, 182, 62218411
with = 100 and & = 20. Ten 90% [[32.51155451,94, 5238669511

. . . [L[91.12188119,183.133393711]
confidence intervals are displayed. In this [[94. 44257414, 106, 461236611

simulation, nine of the intervals actually [[98.49315633, 118, 585468811

. . [[89.84569729,1681.858069511]
contain the mean p = 100. This need not [[97.03445731, 189, B46769211]
necessarily be true all the time. [[89.63977771,181.652890211]

2. Explore the phenomenon that 100¢% of the confidence intervals will actually contain the
population mean p.
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6. (f) (9V3/2) cis (2n/3), (~9V3/4) + (27/4)i
(g) (1024/27)kcis (0), 1024/27

(h) (1024/27) cis (0), (1024/27)

Answers

Exercise 1.1

1. (a) 2,7/3 (b) 2,—2n/3 (c) 2,-m/6 7. () w=acis(-a), z =bcis (-B)
(d) 2¥2,3m/4 (e) 4,2 0 6, -2

2. (a) V5 cis(1.107) (b) 5cis(2.21) Exercise 1.3
(c) ¢is (0.93) (d) 2cis(n/6)  (e) 4cis (0) L
(f) 3cis (—1/2) STC)

3. (a) 2i (b) (3V2/2) — (3V2/2)i
() —V3+i (d) -3i (&) =1+
(® —(5V3/2) + (5/2)i @

4. (a) 2-3i, V13 cis (-0.98) ®
(b) =1 +4i,V17 cis (1.82) e g Re
(c) 3+ 5i, V34 cis (1.03) RO

5. (a) mlsz,z (b) \/(a2+ 1)2, —a 2. m
(¢) Ya +4),-2/a () (VaVa +1),a 2

Exercise 1.2 o) @, © .

1. (a) 6cis(Tn/12)  (b) 9 cis (=57/6) * @ 0
(¢) 20 cis (-7m/12)  (d) 10 cis (57/6) Ao
(e) 32cis (-3m/4)  (f) 81 cis (—2n/3)

(2) (1/81) cis2n/3)  (h) (1/64) cis(n/2) 3.

2. (a) 2 cis (m/12) (b) 2 cis (-1/12) i

() 2 cis (=51/6) (d) cis (1/2)
(&) cis (2n/3) ) (1/3) cis (~n/2) e
(2) 32 cis (n/2) (h) 80 cis () - %’"‘d) Re

(@) 1 =34, (1/4) — (N3/4)i

(b) (3V2/2) + (3V2/2)i, (N2/6) + (N2/6)i
(¢) —2v2 — 2V2i, (—2/8) — (N2/8)i

(d) (5/2)(—V3 + i), (—V3/10) + (1/10)i
(e) 2,172 ) (1/2)i, 2i

. (a) 8 cis (~n/2), ~8i

(b) 42 cis (3n/4), —4 + 4i

'
-

4. (a) rcis(0-n)
() rzcis (0 —n/2)
(e) r

()(e)

(b) rzcis (-9)
(d) ~ cis (20)
() 2rcos O

() 32 cis (-1/3), 16 — 16V3i (&) (1/r) cis (-0)

(d) 64 cis (m), —64 (i) rcis (n/2 - 0) () r cis (26 — )
(e) (1/64) cis (0), 1/64 2

®) (1/64) cis (r), —1/64 (k) 1/r () 2rsin 6 cis (n/2)

(g) (1/32) cis (51/6), —(V3)/64 + i/64 ' .
(h) (1/16) cis (2n/3), —1/32 + (iV3)/32
5. (a) 4V2cis(—m/4), 4 — 4i
(b) 4 cis (n), -4 o Ny
() 2 cis 2n/3), =1 +V3i _ zq/ ™
(d) 27 cis (n/2), 27i o | 18T e
(&) (172) cis (—n/2), (~1/2)i 2 /
() (4/9) cis (~51/6), (2N3/9) — (2/9)i z
(® ﬁab/9) cis (—n/4); (abV2)/18 — [(abN2)/18}i iz
() |al(5b)| cis 3r/a);
-lal~N2yqolaly +1clalv2)(101 61 )i
6. (a) (2V3/3) cis (n/6), 1 + (N3/3)i
(b) (16/9) cis (~57/6), (—-83/9) — (8/9)i
(c) (8Y3/3) cis (-5m/6), —4 — (i 4N3)/3
(d) (1/16) cis(n), -1/16
(e) (9V372) cis (n/6), (27/4) + (IN3/4)i

(h) (21/r) cis (m/2 — 6)
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6. Exercise 1.4
,n 1. (8
z 6
R 6
(®)
4
7 4 5o Re
m
2 4
o Wz
z (©)
w |w m
\'\. 3
CFEL
R 2
A\
= w 5 f\’\Re
[ J
W+Z=wtz y
.z_t
8. (d)

Re

RN IR
\‘y (e
» z/w

A

// N ®
aAh R 8
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1. (2) L. (m)

)] ()
m im
4/\ 31
4 4 Re -'3 1 Re
4 3
()
m 2. (a) x=5 (b) y2= —3& (c) x+y=5
D @ =3 @x+y=4 Or=4
. e (8) (x—2)2+y =126
x (h) (x—1)2+(y—1)2=4

(® (x—2)2+(y—3)2=4
G) &+ +(p+2) =16

0 k) y=1/2 (1) y=x=2
A (m) y=x () y=(=x/3)—1
3. (a)

im

()
()
Re Im
3 3 8
6
3 .
(1) ?
m <— — Re
. / 2 Zl 2
~ ©

oA
N
—>3
oy
F
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4. (a) 6. (a)

(4.5)

4 L 4
| (b)
(b) m
Im 4
A
84
) ke
gradient = 2/3
41 4.5)
4
J it L > Re
4
v ©
jm
() 5
Im
gh
(45) 3 5 Fe
N
44
5
t t Re
4 d @
(2-1) "
7
5. (a)
I
v .
7 7
(-2,2) T
. B
} > Re
4 \ 4
4T (3-4) (e
Im
8y 4
)
Im
+ +—> Re
4t 4 3 4
(.3,4>\
4
t > Re
4 4
\ ®
41 (2-2) Im
44
(©
Im . T , N
34 Ui 4 4
(-2,2)
} > Re
4
v
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7. (a) 7. (h)

(b) 8. (a)

(c) (b)

(d) (©

(e) (d)

6y (e) i

© 0
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Answers

2 2
9. (@ x +y =lory=0
im

2 2
(d) (x-1) +(y+1) =2 except the point (2,0)

im
34

¢+t Re
-3 3
X

-3y

(e) 5x—2y+6=0

4

Re

2 2
) x +(y-12) =1/4

Im

D

(& »=0

9. (h) x=0

44

2 2
() (x+4/3) + @+ 1/3) =@2V2/3)

im
14

(]

(-413,-1/3)

2y

2y

2 2
() (x+5/4) +(y—19/8) =117/64

im
54

(-5/4,19/8)

P> Re

&
<
5

v

10. (a) min V2 — 1, max V2 +1
(b) min —n/2 rad, max 0 rad
11. (@) 0<|z| <10
(b) —0.64 < arg(z) <2.50 rad
12. (a) 0< |z| <2
(b) 0<arg(z) < /4
13. (a) min 1, max 2 +\2
(b) min —1.25 rad, max w/4 rad
14. a) |z-5|=z-5i
®) lz-(+9] <1
(c) —n/4 < arg(z) < w4
(@ lz-2] <3and |z-6] <3
() lz—(3+20)| + 12— (7420 = [(7+2i) - (-3+2i) |
() |z-@+2i)| <8and w4 < arg(z) < /2

Exercise 2.1
1. (a) cis (n/3), cis (w), cis (—n/3)
(b) 2 cis (w/3), 2 cis (m), 2 cis (—-n/3)
(c) V2 cis (n/4), N2 cis (3n/4), N2 cis (=37/4),
N2 cis (—m/4)
(d) cis (0), cis 27/5), cis (40/5), cis (—4n/5)
cis (—27/5)
(e) 2 cis (0), 2 cis (27/5), 2 cis (41/5),
2 cis(—4m/5), 2 cis (-271/5)
(f) 2 cis (0), 2 cis (n/3), 2 cis (27/3), 2 cis (7),
2 cis (-27/3), 2 cis (—1/3)
2. (a) 0.9239 +0.3827i, —0.9239 — 0.3827i,
—0.3827 +0.9239i, 0.3827 — 0.9239i
(b) £0.9511 — 0.3090:, £0.5878 + 0.8090i, —i
(c) 1.0696 +0.2127i, -1.0696 — 0.2127i
~0.2127 +1.06961, 0.2127 — 1.0696
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. (d) 1.1236 +0.23887, 0.1201 + 1.14244,

~1.0494 + 0.4672i, —0.7686 — 0.8536i
0.5743 — 0.9948i

(e) 1.0548 — 0.38394, 0.8599 +0.7215i,
—0.1949 + 1.10544, ~1.0548 + 0.3839;,
—0.8599 — 0.72154, 0.1949 — 1.1054i

() -1.5,0.75 + 1.2990i

+1, (£0.5 + 0.8660i)

2
5. W= (—1/75) +(\32)i, w =(=1/2) — (V3/2)i,

w =1,z =1

3 cis (), 3 ciss(37t/5), 3 c¢is (-37/5), 3 cis (7/5),
3cis (—-n/5);z = =243

2 cis (m/3), 2 cis (27t/3),62 cis (m), 2 cis (—27/3),
2 cis (-1/3), 2 cis (0); z =64

V2 cis (-m/4), N2 cis (0), N2 cis (1/4),

N2 cis (/2), N2 cis 3n/4), N2 cgis (m),

V2 cis (-n/2), N2 cis (-3n/4);z =16

9. n=25; cis (xn/5), cis (£37/5), cis ()
10. (a) —1/2 + (N3/2)i, 1

(b) +i, +2i, +1
(¢) =172 £ (N3/2)i, +(N3)/2 = (1/2)i, i
(d) +(V3/2) + (112)i, +N3 — i, =i, 2i

Exercise 2.2
3. sin (n/6) repeated, sin (371/2)
4. cos (n/9), cos (5né9), cos (71r/%?

5. cos (66) =32 cos (B) — 48 cosz(e)

+ 18 cos () -1
(a) cos (n/12), cos (n/4), cos (57/12),
cos (71/12), cos (31/4), cozs (117/12)
2 2

(b) cos (1/12), cos (Srt/4), cos (525/12)

6. (a) cos(56) =16 cos (8) — 20cos (0) + 5cos(0)

(b) a=16,b=-4,c=-4,d=1
(c) cos (2n/5) repeated, cos (4n/5) repeated

Exercise 2.3

1.

. () cis(n/6)

(@) 4

@ 2¢° (b) Se 74
(©) 3¢ %6 @) 2e %
(@ ¢ (b) &% © 2%

(©) 243¢ 75
(b) cis(-57/6)
@) (1/¢’) cis(n/3)

() 242 %

(c) e cis(-m/4)

. (@) (-172) +i(\N3)2

(b) (—V2)/2) + i(N2)2
(c) 1/(2e) - i(N3)/(2e)

2

(d) (= N3)2 + i(e)2
(b) 22 e

(© JZe % (d) 207

® 207

) 22 7
®) 1267
@ J2H

(f) \/geﬂnlz

(b) 242 cis(%"

5

(@ YFeis-5)
® 242 cis(5—6T£)

®) x=h2,y=n
(d) x=0,y=n/2

5. (e) 2
@ 2J2e 7"

6. (a) 125
© Lo

3 i71'r12
e 1’—6

7. (a) %cis (%)

V2

(©) 5cis(-g)

(e) 242 cis(—%")
12. (a) x=0,y=mx

() x=mn2,y=0

(&) x=In2,y=nl/4
13. (a) a=0,b==

() a=ln3,b=n=n
14. a=lnk2,y=n
15. Max Re(z) =2, Min Im(z) =-2

y

16. Min Re(z) =—1/e, Max Im(z) = 1/e

y

N
%

®) a=n2,b=xn

1% X

dah

Exercise 3.1

1. a=6,b=-4 2. k=-1
3.a=2,b=0,c=5 4. a=-3,b=0,c=7
5. () (x+ l)§x+2)()2c+3)(x+4)

®) (x+1) x+2)

(© (x—1) x=2)x+3)
(@) G+ D= 2)(2x - D@x+1)

(& (= D2x+ i +1)
O G-DE-2)x +4)
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Answers

3 2
6. (x +3)x—2)x—-D(x+1) 1. (¢) —2x +4x-7/2,17/2; -2x+4, —9x+9
3 2
7. (@ y (d) 6x +7x +16:+27, 64
150 6x —5x+26, -25x+114
2
100 3x—4, 3x +5x+2
y Intercept
(0,28) 2. p=1,9=3 3. p=12/5,q=-24/5
4. p=-549=7 5.p=3,9=5
— . oy Ly 6. a=1,b=- 7. a=-35b=-23
10 \.’s EANE 10 8. a=1,b=-2
[x.mm,msoi xIntercept 9. p=9,qg=-2,r=-11
(-7.0) (2,0) 10. p=-8,g=3,r=9
(b) 11. a=3,b=4
x intercept x Intercept 12. a=6,b=——7
(5.0 y (1.0) 13. (b) a=-3,b==2  (c) 5(2x+3)
\/ i / 14. a=2,b=1,c=3; 103

* / \\ : ) Exercise 3.3

x Intercept 1. (a) (Z-i)(Z+i)(Z+2)
\ 2.0 (b) (z - 2i)(z + 2i)(z +2)
| (©) Qz+DQRz—i)z—-1)
(orazy d E-(0-)-(1+))z+4)
S0t 2. a=—4,b=16; (z—4i)(z + 4i)z - 4)
(©) 3. a=-2,b=4; (z=1-i)z—1+i)(z+2)
4. a=6,b=—15;1+2i,+\3
Inercept T o 5.a=16,b=4;-2+i,+i/2
(-1,0) | 6. a=9,b=2;~1+\2i,+i3
\ 7. (@) £1,+i\2 () -1,2,-1%i
NN/ () -1,3,1+N2  (d) £2i,2+i

s /V \ 8. (a) 1,%(V2)2 £ i(N2)12
T x Intercept (b) 1, + (\12)/2 + t(\/2)/2

X intercept

m (2,0) (¢) £1,% 172+ i(N3)2
?'°) w0t it () £ 1,% 172 % i(V3)/2
9. a=6,b=0,c=1 10. a=4,b=4,c=4
y
S P Exercise 4.1
1 1. (a) Not an onto function.
1 (b) Not an onto function.
| (¢) Not an onto function.
} —a > x (d) Is an onto function.
5 \ 5 2. (a) Many to one function.
(b) Many to one function.
’(‘l';‘f:;"“ Pl il (c) One to one function.
501 ’ 3. (a) One to one function.
8. (a) -1,2 b -1,1 (b) Many to one function.
() -1,0,1,1/3,2 (d) -1,-1/3,1/2,0, 1 (c) One to one function.
(e) £2,1+2 ® -1,2 (d) Many to one function.
9. —1,2/3,12 (e) One to one function.
@ —1/2,153,1/4  (b) £N(2/3), +V(1/2) () Many to one function.
©) —2/3,-1/2,1 @) -1,312,2 (g) One to one functlop.
10. =3,-1/2,2 (h) Many to one func'glon.
@) -2,1/2,3 (b) = 2 (1) Many to one function.

(j) Many to one function.
4. (a) (—oo,3/2] or [3/2, )
(b) (-0, -2] or [-2, )

) -2,-1/3,12  (d) =1/2,1/3,2

Exercise 3.2

2 (C) (_007 —1) or (_1: w)
1. (a) (x —2x+8),-23 ; x, 8&x—7 (d R
2
(b) 3x /2 — 7x/4 =39/8, 57/8; 3x—2, —16x+16 (e) (-0,2] or [2, 0)

(f) (-0, 5/2] or [5/2, )
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4. (g) [-7,-2]or [-2, 3]
(i) [-2, 0} or [0, 2]
5. (a) [-n/4, /4]
(c) [-3n/4, n/4]
(€ [-m 0) v (0, n]

® [n2—tan (4/3), 12 —tan_ (4/3)]

(h) [-2,2] or[2, 6]
() (-0, 0] or [2, )
(b) [0, 27]
(d) [0, n/2]

Exercise 4.2

1. (a) Yes (b) No
(c) Yes (d) No
2. (a) Yes (b) Yes
(c) Yes (d) Yes
3. (a) Yes (b) No
(c) Yes (d) No
4. (a) Yes (b) No
(c) Yzes (d) No )
5. (a) x (b) (x2— 3) 2+ 3
(c) x—26 (d) x +3) 2+ 3
6. (a) l/x (b) l/gx+ 1% -1
©) (x+D/(x+2) dx -1 -1
7. (@) &7 (b) 1+26°
© € (c) 3+4x
8. (a) 1+x () 1/2-x)
() (x-1)x (d) x/2x+1)

9. (a) Domain for f/: R, Range for f/: R
Domain for g: R — {0}
Range forg: R - {0}
(d) R {5}
(c) 1/(5-x); R — {5}, R - {0}.
10. (a) Domain for f: R, Range for f: [-5, ©)
Domain for g: [-1, o)
Range for g : [0, )
(®) [-1, )
(C) x—4 [—'1: OO), [_59 oo)
11. (1, ); x, (1, ), (1, o)

12. (=00, 1] U1, 00); 1+ |x], (~o0, —1] U1, o),

(2, )
13. (a) In(1 +sinx); Not a function.
(b) sin (Inx)+1; Is a function. R, [0, 2]

25-x . +
14. (a) 5 ; Is a function. (-0, 25], R
X
(b) 25 -5 ; Not a function.

15. glx)=x+5 16. gx)=1/(x-2)
17. gx)=-1/[2x+1)] 18 f(x)=5-x 5
19. fx)=2x-3 20. gx)=(x-3) +1

21 gx)=(x-1D/3x-1)

Exercise 4.3

1. (a) Yes; domain R, range R
(b) NO, [_19 OO) or (_007 _1]5

domain R“(; , range [—1, o) or (-, —1]

. (¢) No, [-1, ®) or (-, —1];

domain (-0, 1], range [-1, ) or (—o0, —1]
(d) Yes; domain [0, ) range [1, )

. (a) Yes (b) No
(¢) No (d) Yes
(e) Yes (f) Yes
(g2) Yes (h) Yes
(i) No (j) No
. (@) x=3)2 (b) —(4 +x)/5
(c) 4+x (d) 21/4_5\1(1 -x)

(e) (-5 £x)2 ) x

© [h@-112 () -2

6) (x2~ 1/x g —x%/(x2+ 1)
* x -1 (M (1+x Yx

. (@) x2—-4orx<-4,

-1
f (x)=—4+x, domain x > 0,

rangey > —4;
-1
f (x)=—-4—x, domain x> 0,
rangey < —4
(b) x=2o0rx<2;
-1
f (®=2+(x-1),domainx> 1,
rangey > 2
-1
f ()=2-(x~-1), domainx> 1,
range y < 2
(¢) x20orx<0;
-1
f )= \/(x + 1), domain x > —1,
range y >0
-1
S x)= —\/(x + 1), domainx = —1,
range y <0
(d) x=2-lorx<-1;
-1
f @®=-1+(x-1), domainx> 1,

range y > -1
-1
f @=-1-V(x-1),domainx > 1,

range y < —1
(&) x>200rx<0;
-1
f (x)=7[(1/x) - 1], domain 0 <x < 1,
rangey = 0
-1
f (x)=-1N[(1/x) = 1], domain 0 <x < 1,
range y <0
) x>lorx<l;
-1
f (x)=1+(1/x), domain x>0,
range y > |
-1
f (x)=1-(1/x), domain x > 0,
range y <1
(g) —n/2<x<7/2;
f_ = sin x, domain -1 <x< 1,
range ~/2 <y < /2
(h) 0<x<w2;
-1 -1
f (x)=(cos x)/2,domain-1<x<1,
range 0 <y <m/2
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Answers

4. (1) m<x<m 1. (d) ,
-1 -1
f (x)=tan x,domain R, 4 Ve
range —t<y<m 1 e
x w+
5. (@) V(1 -e); (-0, 0], [0, 1) i
—_ e
® V7 (o0, 11,1, ) . Ay
2 2 Panim LI T
(¢) In(1-x);1=(inx) s /ﬂw*
6. (a) (x—1)/2;4 - 1/x; (32 ~ 1/x)/2 - /
2 9T {
7. (@) x —L; 1Ux-1;1/x =1)-1 / i
v
8. (a) Domain of f: ]RJ(;. Domain of g : Rg. 2. (a) ,
(b) Domain of f: ]RJ(;. Domain of g : ]RS. 104 P
9. (a) Domain of f: (-, I]. V4
. + | ’/'/_.-/
Domainofg: Rg. ///
(b) Domain of f: (-, 1]. t b x
-10 7 10
Domain of g : ]Rg. /,4/
10. Domain of f: (~1, ). Domain of g : (0, ). ?/
. 104
Exercise 5.1 (b) g
1. (a) y y
ol /o - 10&\
ye \
/S
/// ¥
v
PR M
/
// -10
b
®) y ()
104 o d y . P
/ e S
e s
S . Iy
_/ ard I e
¥ - - x Ny
10 ) / // 10 : 1 / e
. ST -20 10 ”///’I 10 20
Ve 4 / T e
© , ol et
) e v
104 ? e (d)
SR e y
{ S 1 ? ’//'
- ANV
\\““*~—-—> [ ,'! //
7 e ! t
10 ) // \\.‘ 10 g ‘_/i/
r 1
P } - ———t> x
/ | 10 A ®
,// ya //
d -10 /'/. {
’ s |
" ;
/./ 104 i
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x x > x
~,
it a ks s . / 1a / T8
Ad i . =3
\ e - A / lvﬂ ™, llvM
" g N,
4 - - \..\« / ./.. .u .f
» X S - "
Pt e .\\.J d N
T T N> >
>\ : P ———— >} T { ~ } > ot ™ ‘ AR §
R 2 2 o 2 N . 2 2 / 2
S SR ~ ]

318

o ~~ ~~ —_ ~~~
< < Z 5 2
< n
x % % x %
“ - \ o
/ .\.\\\. L / 2
/ \J - — ;x-x\‘\
N e By
Ld _— / J S
> - .. -
o et 1 S et { N > ot N (\\ L 1 T A "
T 1 T T T = T N t } o + }
s / ) B / g g8 ) B s S s )N/ S
, /t
N . 1
- ) ]
~ !
N |
™ S
...... e
—~ ~ ~ e ~
= £ L 2 =
e <
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Answers

5. () 5. (h)
y 14
wl fy= f(f)// T /'/
_ y y = flx) J
JVAMA e r
" — /
+ 17 b x ; At
| 0 o o
rd -
V4 S/ v ={f 00
/ 10+ ' 4 wT
’ 0]
(d) y y
1+ /’/
y=fw e
L
v x
$ x"\ A > X
10 // y = f”
/
/
//
/ 0 G
(e)
X
6. (a)
y
® . Nt
y = fl "\
10+ // \\
//' N,
| AN
'y =0 l ' ,
P4 1'0 ' 10 )
RIS V20 Nu— "
= * . N
19 ol e
p {, , fx)
| b
p 4} (b) ,
(®
y
10 4] //
y = fix) / //
//
L \\' > x
.1’0 \-‘ 1‘0
it
y = fn
/ 2t
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6. (c) , 6. (h)
10 -+~
, oL
y = fix ™
T —> X B = x
-10 10 -10 N 10
i
{
1
104 10+ i
(d) , Q)
/
T/
/'y = fix)
.«4‘/’
} > x x
-5 y = 1 s
fx)
.5 - .
© 0 ,
y
1
104
] 1 y\"' f(x) ,
y = \ /
- flx) J JA AN k
y = flx) )
----------- \\J ¥ \ + LJ\' + > X
U X -6 5 ) 6
10 {( 10 \/ \
| JL
| Y1 ) ol
104
® Exercise .5.2
‘ o L. (a) (i)
S
y = flx) I
a\ |
t J IL* > x
10 r 10 x
VoL
'Il\ " y= i
\f fix)
.10 4+
(g y (ii)
4|
[y =10
H
™ |
\ |
UL
NN S
.X \‘ ,/ &
; N
{ a e
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Answers

1. (b) (i)

() ()

(ii)

N
(ii)
y
—
.
y
1y X
\
/ \
/ |
{ A
/ \
i !
y
AVA x
!
/
i
!
i

@ ®

1. (d) (ii)

-

® O
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2. 0 | fwl= {

—-2x+5) x<-25

2x+5 x=>-25
y
10-/
10 // 1‘() X
/et
(ii)f(|x|)= 2x+5 x<0
2x+5 x20
y
t / > x
-10 // 10
/// -10 4
® O lrwl=1 > *<?
-(B3-x) x23
y
104+
1L\/
t — . SCG——+—> X
10 \ 10
AN
o
-10
(11)f(|x’)= 3+x x<0
3-x x20

2. (¢) ()
D=3 x<-3,x>3
17wl = {_(x+3)(x—3) —3<x<3
y
T
i) £(lx)= (x +3)0x = 3)
101:‘
-;o ) 13 ¥
(d )

lf(x)|={ )

X2 —3x—4

—x" +3x+4
y

10 +

x<-Lx>4

-1<x<4

210 4+

X2 +3x-4 x<0

(ii)f(|xl)={ 5

x"-3x4+4 x20

y
a
110+

: s
-10 iy

X
10

© O.T.Lee
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Answers

2@ | fwl={7% *<?
. (e 1 X =
2" -4 x>2
y
10 4+
—
‘lr 7 } X
-10 L/ 10
-+ ——//
-10 -1
iy flhy= 2, 74 * <O
11 X =
2 -4 x>0
y
10 1

+—t—t—F> X
/ 10

-10 4

—“In(x+2) x<-1

® @O lrwl= m(+2) x>l
y
o +
4 + L‘/;/-—"x
;0 /4. ' 1l0
40+
(i f(| | _ In(-x+2) x<0
R *1) In(x+2) x20
y
"

2. (® @)
If()l —sinx (2r-Drn<x<2nn
0l =
sinx 2un<x<(2n+)n
y
»1
A N N
\ / 5,
AN \\./’
-2 —I—
.. _fsin(=x) x<0
@ f(lx) {sin(x) x20

2

N

y

M O @l =

—COSXx

COS x

2

~ |
—+ .\,

5 \ /
\/ /|

# = x
\5/

(4n+D)m < (4n+3)n

2 2
(4n-Dxn <x< (4n+)m
2 2

y

-

X

LAY 7 \ }
5 \\‘ / \ // 5
\\‘\/ 4 ‘\\,//
24
(@) £ ! | ) cos(-x) x<0
i x|)=
cos(x) x20

2

\

4

/N /

-5

VA
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Va-x -2 0
2. () O /@] :{2_\74‘_; izo
y

10

m%é—'—hlﬂx

—~

-10 Ay 10
-10 4~
) @) f(lx]y=Vrx -2 x<0
11 X =
V4-x-2 x>0
y
10 -+
;' ----- e > x
-10 10
.10
_ —-In2
e 2 x<lTn
O 6 lrel=1 I
2—e x> —
2
S
+ X + '
10 107
.10 <
. ¥ -2 x<0
i) f(lx=1 ",
e -2 x=20
y
‘..L.
]
i
—}- } v — 1t x
1o . A0,
-10__

2.0 @ |/l = {

10+

-1/(x-2) x<2

x>2

-10 <

G @ f(lxhy=

I/(=x-2) x<2
1/ (x=2) x>2

DRORFAE) ={

-1/ 2+x)+2) x<-5/2
1/2+x)+2 x>-5/2

= +— > X
-10 } 10
.}Q-J
11 X )=
2+1/(2+x) x>0
y
‘O—F
|\.
YI .—_\1 }
T T X
10 10
;10-
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Answers

3. (@) ()
(i1)
y
N
(®) ()
y
é
(ii)
y
[ J
[ ]
(c) (i)
y
\\//

1. (o) Gi)
y
(d @
y
/\\/1 l“""l
|
(i)
y
4. (a) (i)
y
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4. (b) @O , 4. (d) (i)
> ; .
(ii)
y Exercise 5.3
1. (2)
y
\ / o Horizontal Asymptote
™ '
) x Ex
L R + X
5 7 5
(C) (1)  Intarcept 5+ R )\‘Ie:‘i;alAsymptote
y (0,-1)
(b)
* y
104
X ES
_-// 4
« | x Intercept
y Intercept 54 (2,0) Vertical Asymptote
{0,-1) i \ o
e /
(ii) \ s
y 4..-5..._—-—---~"/ 5
/ 51
Horizontal Asymptote +
. y=-2
\ o]
— ©
[ y Intercept
. 1 (0,2)
(d) (1) y Vertical Asymgptote __
x=-3 T X Intercept
e 1 {3,0)
PR N .\‘/L L X
T t T Te—
5 1 S
X 1 \
\ st
\ r Horizontal Asymptote
\ I
\ +
\ 10+
4
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Answers

1. (d) 1. (h)
y
b
10 wr
N Vertical Asymptote
Hmzzoml Asymptote x=-3 Horizontal Asymptote
L y= y=0
5-—
5 / \
i n 1 + 4 4
T '\ T +—> X
i .’F‘g 5
! X Sy Intercept
-5 \ 5 {0,-1)
/ X Intercept x Intercept K3 : L.
[ (4,0) ’,'_3"0 Varti;all\syrmwte
Vertical Asymptote \ 2 x=
x=-2 1 104
T ¥ Intercept L
fo.=4) 2. (@ @) y=x+2)/(x-2)
ii
© (if) |
y 04
10 +
Vertical Asymptote 1 Vertical Asymptote (-2,0)
X = =2 b x=2 \ s+
\\ 54 e ——— N
] + : £ v X
10 -5 \ 10
\‘.
s3I
— x {0,-1) i
3 3 ‘1
5 AN wd i
i y intercept ¥
54 x Intercept (ii1)
1 (0,0)
Horizontal Asymptote + T3
= pUL, %
y=0 4 '
T i
-0t (=2.0) |
() T
y \\h-‘_,
Point Discontinuity | P —c—— : %
3 T -10 s 10
5.3 1
¥ Intercept Horizontal Asymptote
0,3y 57 . o/
e =" ——t x (®) @) y=(x-2)/(x+2)
& ] (i1)
- H4
1
1 10+
Vertical Asymptote > |
x=3
54 (2,0)
-10+4 /
) ! 5 X
(g) 10 K s 10
/
. N {
Point D;scontmulty ‘}s-- {0.-1)
[ —2,;] Vertical Asymptote f
x=3 fol
4
(iii)
T Yy
] " \
+ ! 10+
o+ i
e rreserven. SUIVZ4 S ot X i
5 1 / fis1 1o
J tnercept _ «w,,/ e,
(0,1) st > : i
. 10 5 s 10
Horizontal Asymptote
r=0 ] BE 0.0
10 f
104+
v
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2. () () y=(1 - 2x)/(x+ 1)

(ii)
y
{0,1}
s NSTERRAF Y
“"'—_‘”"'“~—-.
=
VET 1
11 (30
b
A {
(iii)
y

1
4

i (0,1)

M
x

4. (c)

——— \\\ _ \
\ 1
()
'l 1
3. (a) a=2,b=0,c=1
(b) y '
IS“ {~1,0) ‘ E {a,0)
\\x X//
=s JSL\“'-‘;O’X
= ‘\\'\ ,\"\
,',’ /,< -2 >'/ l1.
s SZE Y
i { v "
ST W 6 a=k,b=—k,c=—2k,d=4k k is a real no.
(©) y 7.a=2,b=-1,c 3,d=
nY 8. a=-Lb=1l,c=1,d=
i J ora=1,b=—1,c—1,d
'1 j 9.a=l,b=—1,c=1,d=2,e 3,f——3
VAR (ab=1and ad=-2)
il / o 10. (a) intercepts (0, 0)
s Y T asymptotes x = —2,x=2,y=1
I" I " (b) a=-8
| , ( 2»;] (¢) max point (0, 0)
m @ y
4 @) a=2,b=-5c=1,d=2 U
®) y i QW
b \ ; ‘X
10 5 s 1
t = x :’?z‘km Vertical Asymgrote
5T \\ -'\ s 10 B
1 5 4 A
} (2'°] 11. (2) intercepts (0, 0); asymptotes y = 0
| (b) a=1,6=1
st}
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11. (c) min point (—1,~ 1/2), max point (1, 1/2) 15. ,
(d) Y ;
y
T Local Maximum Vestical Asymptote Hocizontal Asymptote
Ho-mml Asymplote 1 x=-3 yao

y=0 / 1.-2’ \

N e

+ t t = x
S s 10 ~
Vertical Asymptote
Local Minimum x=3
[ '1'121'] 16 ’ ‘
»] ) y
12. (a) no intercepts; asymptotes x =0, ST e
oblique asymptote y = 2x Loca) Masin
(b) a=2,b=-800
(c) min point (20, 80), max point (—20, —80) X Intercept / xlntercept
(d) .0 AN (1,0)
t t + > x

/ Rorizontal Asymptote
1001 y=-1

T + 1 —x *T
-100 -50 50 100 17.
y
toaimn TR 1\ ottt s
ax=0 yel
13. (a) 10 intercepts -5 ; x
asymptotesx=0,x=-3,y=1 ~
() a=1,b=-30ra=-3,b=1 ” ag e
(c) min point (3, 2/3), max point (-1, —-2) Vertical Asymptote /
(d) x=1 Local Maximum
yk jo—atx = g
Vertical Asymptote 1 -104 ﬁ
x=-8 Hortzonta! Asymptote
y=1
/ Exercise 5.4
) . oy 1. (@) G) y=x-2/(x-1)
: t ¢ — x
-10 -5 \5 10 (111) y
Local Minkmum
Local Maximum | [3_:.) 10,2) 04

{-1,-2}

—— \
Vertical Asymptota
EXS x=0 (-1,0)
14, \

N/

y
4 3 + t
5T -10 5
¥ Intercept
Local Maximum Horlzontat Asymptote
(0,0} y=1 [ 54
- N h Oblique Asymptote
t $ + + X y=x 4
-10 -5 5 10
Vertical Asymptote
x= =2 Vertical Asymptote
x=2
54
4 L
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1. (b) () y=—x+1+4/(x+2)
(iii)

(=3,0)

O

u +
-10 5

. 54
Vertical Asymptote \
x =2

() () y=x+1-
(iii)

y=—-x+1

6/(x +2)

y Oblique Asymptote
104 y=x+1 2

— 2 )
} . % / +—+— = x
10 B s 10
—_—
/ (0,-2)
Asympm
x==2
@ @) y=x-3-2/(x-2)
(iif)
y
10 T oOblique Asymptote
y=x-3
(4,0)
- t—r x
5 10
Vertical Asymptote
x=2
2. (a) () y=x+1/x
(iv)
y
3
pLE 3
Local Mintmum
t4,2) 1 Oblique Asymptate
iqu
\ o q 31
y=x
t + + 4> x
-10 -5 5 10
i.oul Maximum
(-1,-2} S —
Verticat Asymptote
x=0

2. () () y=—x—1-1/x

(iv)

} Min
Oblique Asymptote t:‘ 1} -
y= ~x=1 /
t . \ - x
10 5 h 5 0
/ Local Maximum
-5 (1,-3)
Vertical Asymptote 4
x=0 1
y

© () y=x+2+1/(x-2)
(iv)
b
Locat Minirum 0
(3,6}
\\
Pt e \i:/ \Sg'fiezAsvmmote
i s X
s 10
\ V
Vartical Asymptote
x=2
104
L
. 2
(d (@) y=x+x/(x - 1)
(iv)
ymptote 10 e | Mink
Vartical Asy T lf:ca inlmum
x == \ [-E.%)
T\
Oblique Asymptote
y=x b= /
: Y ¥ fr X
-5 / \ 5
m Point of Horizontal Inflection
ST (0,0
Local Maximum ]
[_"E‘-a’zé) \ Vertical Asymptote
o1 4 x=1
3. (@ y=x-4
(b) b=_4,C=—1’d=4’n=_4
(©
y
(—1 ’ 0 )
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Exercise 6.1

1. (2)

(b)

. (a) <10,3,2> (b) <4,-15/2,11>
. (a) £3V43 (b) 10+ 10V3
<8,-8,8>
. (a) ((N83)/83)<5,-3,7>
(b) —10((V83)/83)<5,-3,7>

6. (a) V(17/10)<-1,0,-3>

() (V3217 <0,-1,-4>
7. (@) (V59)M30) <2, -5, -1 >

(b) (<10N17)<-1,0,4 >
8. (a) (5N6)<-1,1,2>

(b) (-10N6)<-1,1,2>
9. =(1\3)<1,-2,1>

10. +2V6 11. Oor 1

12. () a=1,p=-1 b)) a=1,p=1
14, a=-p12

15. a=2,=4 or a=3,B=5

16. Sa.+4p =45

17. () (1/3)<-3,1,10>
(b) (1/5)<-8,24,52>
18. <-32,-14, 65>
19. (1/2)<26,-10,-5>
20. (a) 90° (b) 353° (c) 85.3° (d) 52.8°
21. (a) perpendicular (b) Neither
(c) Parallel, opposite direction
(d) Parallel, same direction
22. (a) (5/V13) <0, 3,2 > or equivalent.
(b) (100/2) <1, 0, 1 > or equivalent.
(¢) (10N5)<2,0,1> or equivalent.
(d) (20/3)<2,2, 1> orequivalent.
23. a=b=15 24. a=-9/8,b=4

25.
27.
28.

29.
30.
31.
32.

33.
35.

a=(2)12, b=+ (N2)12

(@) (1/3)<2,2,-1> (b) <1,1,1>
(a) (-5/9)<2,-1,-2>

(b) -<0,1,2>

(1/16) <5, 18, =73 >
(1/9)<-2, 16,28 >

(a) <1,-1,1>,<0,0,0>

(b) <1,-1,1>,<0,0,0>

(@) <2,1,3>,<3,-9,1>

(b) <3,-9,1><2,1,3>
N(38/51) 34. (V5)/6
(\2)12

Exercise 6.2

3.
4.
6.

7.
10.
11.
13.

(a) <5,4,-7>
(3)y31<1,-1,1>

(b) <-6,-15,-8>
5. (10¥3)<1,-1,-1>

(@) a=1,b=-1 by m=2,n=2
(c) a=3,b=-2 (d) a=3,b=—4
40 8. 4 9. 18
(a) (V219)/15 (b) (V154)/77
(N2)/10 12. (@) 1042 (b) 5V2
(a) 2V77 (b) V77

Exercise 7.1

1.

e

11.

12.

13.

. () A=2

(@ r=<2,1,0>+1<4,5-1>
(b) r=<0,0,5>+1<0,2,-1>
(¢) r=<1,1,-1>+1<1,2,-1>
(d) r=<+2,0,1>+1<0,-1,1/5>

. Equivalent answers including:

(8) r=<0,-2,0>+A1<0,-2,-2>

(b) r=<1,2,1>+1<-2,-3,3>

() r=<1,2,5>+1<3,1,-2>

d) r=<0.5,-0.1,04>+1<0.1,04,03>
(b) A=-5

m=4 5. m=4

. <13,-2, 11 > is the only point not on the line
. (@ r=<0,3>+A<1,-2>

b) r=<0,-1>+A<3,4>
() r=<0,3>+A<4,-3>

. Gradient=-3;y=-3x+6
Lx=3+Ay=1-2A; 2xty=7
. (@) r=<-1,2,0>+A<1,-3,0>

) r=<1,2,4>+A<2,-1,-1>

(c) r=<1,-4,5>+A<1,1,3>

(d r=<0,2,10>+A<6,1,1>

@) x=-52=@F+2/(-3)=(@E+1)/5
®) G+ DI(=2)=y-5=(z-3)(-4)

(©) (4x=3)2=3y+2)/(-2)=4z/5

(@ 3x—DR2=-5(p+1)=5@z+1)/3
@ (x+D)=@F+2/(-3)=(z-2)/6

(b) (x+ D/I(=2)=@+5)/5=(z-6)/(-2)
(@ x=y=z

(®) (x+ DI(6)=(-3)(-3)=(z-4)/(®8)
(© x=3)=E+DN-2),y=4

(d) x=10,z=-5
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14. (a) r=<A,2+51,3-21>
(b) r=<0,-1-A,5+3A>
(¢) r=<(-1-3X0)/2, (-1 —4)0)/2, (-5 + 50)/3>
(d) r=<1+50)/4,(1 —6)1)/3,—(2 - 30)/6>
15. r=<1,2,3>+A<5,-2,0> or equivalent
16. r=<2,2,-2>+A<1,-2,0>or equivalent
17. (@) x=a+Au,y=b+Av,z=c+Aw
O A=(x-a)u=@F-blv=_z-c)w
18. (a) Lines intersect at <13, 17,4 >.
(b) Lines do not intersect.
19. m#-7 20. m=(-3n+22)/(n—6)
21. (a) 90° (b) 65.9°
22, r=<1,2,1>+A<2,2,1>orequivalent

Exercise 7.2
1. (a -2 ()4 (c) 34/5 (d) 5
2. (a) No (b) No (c) Yes (d) No
3. (a) re<2,-3>=-19
(b) r.<-5,10>=-50
(c) r.<10,3>=-16 or equivalent
(d) r.<5,-4>= 58 or equivalent
4. (@) r.<6,1>=17
(b) r.<3,-4>=-36
(¢) r.<8,-3>=-81 or equivalent
(d) r«<7,2>=31 or equivalent
5. (@) re<1,2>=20
() re<-4,3>=0.7
(c) r.<3,10>=-155 or equivalent
(d) r.<-2.7,0.8>=2.27 or equivalent
6. (a) r=<0,-6>+A<2,1>orequivalent
(b) r=<-2,0>+A<8,-5>orequivalent
(¢) r=<-5,0>+A<4,3>orequivalent
7. (a) No intersection (b) No intersection
(c) <5,7> (d) <-2,0>
8. (a) 0 (b) 45°

Exercise 7.3
1. (a) =16 (b) -9/8 (c) -3/2 (d) -6/5
2. (a) Only<2,2,4>is on the plane.
(b) Both points are not on the plane.
3. (a r.<4,0,3>=5
(b) r.<-3,7,10>=26
() r.<1,4,1>=33
(d) r.<4,8,-11>=-120
4. (@) r.<-1,0,2>=-11
(b) r.<3,-2,-2>=23
(c) ro<—4,7,9>=-17
(d) r.<1,10,-10>=-27/4
5. (a) <0,4,-8> (b) <8§,11,-1>
(c) <-1,8,-7> (d) <-15/2,5,-21/4 >
6. Equivalent answers including:
(@ (@ r.<1,0,0>=0
(i) r=2<0,1,0>+p<0,0,1>
® @ r.<,1,1>=8
(i) r=<1,2,5>+x1<4,0,-4>
+u<l,-1,0>

10.

1.

12.

13.

o0 NN AN

L@ (@) r.<1,-1,1>=-1

(i) r=<-2,3,4>+A<-5,-7,-2>
+u1u<8§,0,-8>
d () r.<-67,11,-12>=-254
(i) r=<4,10,8>+A<2,-2,-13 >
+u<-1,-51>

. Equivalent answers including:

(@) r.<-4,-2,1>=3
(b) r.<-11,-38,13>=-72

. Equivalent answers including:

(@) r.<0,2,1>=-1
(b) r.<-28,5,21>=45

(@) r.<2,8,9>=-27

(b) r.<-6,3,1>=11
Equivalent answers including:
(a) r.<6,0,1>=27

) r.<2,-1,0>=-13

(a) 3z=5 (b) 2y=5
(¢c) 2x—4y+3z=10

(d) 5x+2y~62=25

(a) r.<1,0,0>=5

® r.<1,1,0>=1

() r.<0,1,1>=6

(d) r.<2,-3,4>=8

<19,-3,-21>
Exercise 7.4
. (a) 53.1° (b) 22.2° (¢) 20.9° (d) 32.6°
. 0.57 or 7.43 3. 1.05 0r 19.75
L F=<34+50,2+2A, -1 81>
. (@ 90° (b) 90° (c) 76.1° (d) 87.9°
. —0.79 or 58.29 7. —19.62 or 3.62
. m=2£Nn' +3) 9. 555°

10.

r.<1,-3,0>=-1 or equivalent

Exercise 7.5

1.

[=))

(@) |r- <34, 0>| =3

(x— 3) + (- 4) +7 =9
® |lr-<- 122>|—5

(x+1) +(y- 2) +(z— 2) =25
©) lr-<- 12—5>2|—«110

(x+1) +(y- 2? +(z+5) =10
®) |r- <1,4,-5>| =4

(x—l) +(y- 4) +(z+5) =16
242

.<1,2,1> or (-13)<11,8,11>
. (a) Outside
(@) |r-<-1,2,-3>| =5

(b) Inside

®) lr—<1/2,32,1>| = (5V6)/6

. (2) <1,6,0> or (1/3)<-8,—4, 11>

(b) <5,-3,-2> or (1/3)<-5, 11, 14>
lr-<-2,2,-3>| =26
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2 2
10. (a) Circle with equationy +z =64
(b) No intersection.

2 2
11. (a) Circle with equationy +z =99/4

(b) At the point (1,0, 5)

Exercise 7.6

1.

NN Ao

8.
10.
11.
13.

(a) (2V357)/17
(c) (3V2310)/35

. k=7o0r-13
. (b) V5
. (@) 3217
.(a) 2

(©) 1
(e) 5V6
2+ 10V6
(a) V10
2/3

13

Exercise 8.1

(b) (V445)/5
(d) 3V2)2
3. k=0o0r-6

5. (b) (2V138)/69

(b) (13V42)/21
(b) 2

@5

H 6

9. -2/3

(b) \2

12. 3

14. (3V14)/14

1. (d) x=-3

x==Zy2 0"

(e) y=~2x

1. (@) y=0
y 04
) y=1-x
y
y=0;x2 0 104
i / e TS O 7 2 8 4§
} e X
10 10
+ e = x
10 10
-10
(b) x=0
y -10 -+
10 _ 2
Ve, <o (8) y==x
+ / ted> X
10 10
\ [} 1
T T+ X
10 10
.10
(c) y=4
4 104
pOR of 2
y=4;x2 0 (h) y =x y
.—-/——9—- 104
| ] Yaxyz0
t =+ x 1
-10 10 4 /
} Q/—Tx
10 ] 10
0+ *
.10 4+
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2
1. ) y =4x-4
y
04+,
y =d~4y 20
t -//:x
-10 10
.10 4
. 3
@ y=—C-1
104
y=—fe=1ixz 1 I
i > x
10 10
-10 4
X
k) y=xe
+ x
-10
-10 4+
D y=—=x+1/x
y
7 Vv=}'—x;x>o
X
-~
10

+ X
1 10
104

2 2
2. (b) x +y /A=1

2 2
)x/A+y =1

2 -

—
N

a2 -

2 2
(d) x /9+y /4=1

Y
I

\')g-fii:i
2 2
(© x-1) +(»-2) =1

y

34

Z_Q
-1 rly-2) =1
e x

48

2 )
® =1 /s -4) =1

© O.T.Lee
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2.

2 2
(@ x +y =1

2 2 2]
(h) x =4y(1—y)y

24

>

L= a1-y

Exercise 8.2

L.

12.
13.

14.

15.

. (@ a=-5,b=10,c=-15
. () 5.1 sec and 6.1 sec after 0800 hrs

(a) Collide atr=2

(b) Pathof A: r=A<1,-2>
Pathof B: r=<2,-9>+p<2,1>
Intersect at <4, -8 >.

. (@) Do not collide.

(b) Pathof P: r=<0,1>+A<1,1>
Pathof Q: r=<-1,0>+pu<2,3>
Intersect at <—1, 0 >.

. (@) <5+, 2+¢-10+5>m

(b) 20.8 sec (c) 25.0 sec

(b) 10 am

(b) 134.4 m, 5.6 sec after 0800 hours.

. (a) 563.8 m, 0.5 sec before 1 pm

(b) 3.9 sec before 1 pm and 2.8 sec after | pm

. (a) OA(#)=<100+ 10z, 90 — 40z, 80 + 607 > m

OB(f) =<-200 + 22¢, 150 — 42.41, -80 + 66.41>m
(b) Collide 25 sec after 0800 hours at
<350,-910, 1580 > m.

. Collision at 6.45 am at < -5, 110, 0.8 > km
. Interception at 4.30 pm at < 225, 105, 4.7 > nm
10.

11.

A and C will collide at 11 am at <25, 21, 10 >.
(a) <x—4,y-6,z+0.15>ms "

(b) <800,-800,—-40>m

() x=5,y=5,z=-0.2
x=049,y=3.12,z=-0.12

(a) No intersection. (b) <-10,5,10>

(c) <10,0,4> (d) No intersection.
The two vehicles do not collide.

Their paths do not intersect.

The two vehicles do not collide.

Their paths intersect at < 430, 410, 10.9 > m.

Exercise 9.1
Please refer to Solution Manual for this text.

Exercise 9.2
Please refer to Solution Manual for this text.

Exercise 10.1
1. (@) x=4,y=1,
by x=1,y=2,
(c) x=1,y=4,
(d) x=3,y=3,
(e) x=2,y=1,
(f) X=—3,y=—4,
(& x=1,y=2,z=
(h) x=-1,y=2,z=-5
(i) x=-2,y=12,z=2
2. (a) x=5,y=6,z=1
(b) x=-2,y=4,z=3
() x=1,y=2,z=3
d) x=12,y=1/2,z=-5/8
3.(a) x=2,y=4,z=-1
() x=3,y=—4,z=3
(©) x=3,y=9/2,z=9/2
d) x=52,y=1,z=1/4
4. (a) x=4/5,y=4/5,z=4/5
(b) x=5,y=10,2=20
() x=-1,y=-1,z=1/2
(d) x=t\3, y =2, z=+1
S.(a) x=1,y=2,z=-4 (b) No solution.
Exercise 10.2
. A costs $4.90, B costs $3.90, C costs $6.50
. 15 P type, 14 Q type, 13 R type houses
. 70 of A, 100 of B and 120 of C
. NBL final $32, AFL final $18, Concert $27
. (@) 20 0of P, 150fQ, 25 of R
(b) 40ofP,30fQ,50fR
10 of A, 150f B and 18 of C
.x=70,y=80,z=60
x=5y=1,z=3
. 500 of 0 — 1 years, 1700 of 2 — 8 years and
200 of 9 - 10 years
10. (a) 2 red bricks, 8 white bricks, 20 blue bricks
(b) 1005 of A, 620 of B, 750 of C
11. Any reasonable whole number for n.
12. (a) x=20,y=40,z=50
(b) Loop flow between the junctions
C,D and B.
(c) k=-11.2 litres/hour
13. <t+4,-t-1,t> te R
14. <2t +13,1+6,t> te R

oW N e

O 00 = O

Exercise 10.3
1. (a) Equations 1 & 2 inconsistent.
(b) Equation 1 + Equation 2 inconsistent
with Equation 3.
(c) Equations 1 & 2 inconsistent.
(d) Equation 2 — Equation 1 inconsistent
with Equation 3.
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2. (a) Equations 1 & 2 are identical.
(b) Equation 1 — Equation 2 similar to
Equation 3.
(c) 2 x Equation 1 + Equation 2
similar to Equation 3.
(d) Equation 2 — Equation 1 similar to
Equation 3.
3.(@ () p#0,qanyno. (i) p=0,g9#1
(iii) p=0,g=1
() () p#3,ganyno. (ii)) p=3,9# %
(i) p=3g= %
© @p=*-1
(ii1) No value for p
(d) () p#1,p+#-2;any real number for g
(i) p=landg=lorp=—2andg =1
(iii) p=landg=1lorp=-2andg=1
(e) () px—landp=-2

(ii) p=-1

(i) p=-1 (i) p=—2
® @ p=3 (i) No value for p
Gii) p=3

4. (a) System will always have no solutions.
(b) (i) System will always have solutions.
(i) k#£4,ke R
x=19/7,y=-11/7,z=0

(iii) k=4
x=(19-0/7,y=(5t-11)/7
z=tte R

(c) (i) System will always have solutions.
(i) k+7,ke R
x=0,y=-1,z=2

(iii) k=7
x=(14-70/19,y=(3 — 11/19
z=t,te R

d @) k#-5ke R
(i) Not possible.

(iii)) k=-5
x=l-t,y=1-t,z=t,te R
5. k=5/4,2 6. a=9,b=1
1 3 1|16
1 4 3(23
7. (a)
1 2 419
1 5 3(p
(b) Variations possible,
1 3 1 16
0 -1 2| -7
0 0 -5| -10
0 0 -2|-30+p
() p=26
8. (a) k=1
(b)yk=-2

X1 =—5+4t,X2 =8—6t,x3 =f,X4=5—4t
© kzlandk=-2,ke R

x1=(k+ (L = k), x, = Qk+ DIk~ 1),

x3 = (2k = 3)(2k = 2), x4 = (k + DIk - 1)

i 2 1 1
9. —|-1 1 1
3—2 -1 2

Exercise 11.1

1. (a) [(-2Nx))/(1 - \/x)3
) ¢ N1 -2¢ )
(¢) 2(cos x — 2 sin 2x)(sin x + cos 2x)
(d) 1V/[2(1+x)V(1 + In (1 +x)]

2 —tanx
(e) —sec x e

(®) msin 2(1 + mx)
(g) (—msin mx)/(1 + cos mx)

() 20— 1) &’
2
(i) —8x/(1-x)
() (~cosec (1 + Vx))/(=2Vx)
1+x 1+x 1 +x
k) e sec (e ) tan (e )
0 2x 2 2

2
2. (a) 2x sin ®x + @x cos ®X

2 cotx

) (U2e - (Weosecxe
(¢) 4(1 +2x) tan wx +2ax (1 +2x) sec ox

2 2 2
(d 2(x+1) & ncos x -2 tanx

0s —COS x

2 ~COS X
(e) (sinx sin 7x) e +(nsin2mx) e
2
) —2sin2x s2in x + (sin 4x)/2

(g) 1/x + (sec x)/(tan x)
(h) —2xe_x2 (Ilnx+2x)+ e_"2 (1/x+2)

@) xln(+e)+ @ e Yl +eY)
G) 2= 11 +)
+x
e  [l2x—in(l-x)
re 1 -x)
D) 2x[Inx-2x-2In(1 +x)]
fx [Ux—2-2/(1 + )]
2x(1=2x) + 2(1 + x%)
a) >
(1-2x)
2\/;(1+\/;)2
(c) 2/(1 + cos 2x)
2x
© = s
(I1+2¢ ™)
(e)

—2¢0sx
e

. sinx . sinx
(2sinx —4e sin x + 2e €oS X)

- 2esinx )2
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30 [1—In(1+200/(1 +21)
2x(1+ er Mn(1+ er) - 2xze2x
Nin (1 +e )

—CO0Ss
(cosx+e

(&

(1+e**

Slle X —COSXx
cosx—e

(h)

sin x)

1+ e—cosx)2
e 2 ¢

(1) sec =
1+ (1+e)

( x j ( cos x )
A e 1+sinx

)
(x-1)

x(1=ln(+x%))
(1+x)2

3 3\/_ -3 3

4. (a) +

2\/7 4Jc3 /2 4\/;

(b) "7(1—e‘x) "2,

0

(1+sinx)

M

-x
—e —y — _
(I-e x) 3/2(2_e x)
4

(c) —2 sin 4x, —8 cos 4x

(d) /(1 +x),-1/(1 +x)

—sinx 2

(sm3§+ cos x)4

(f) 2tanx+2tan x, 2+ 8tan x + 6 tan x
2

5. 4x+2)cosx—(x +4x—1)sinx

Exercise 11.2 ,
1. (a) 6(x—1) (b) —2/x
372
(©) (x; 1)/(2x 2) (d) +1/x ,
2. () (2t - 1)/(z +1) (b) (61— 1)/(6t + 12)
() (¢t +1)/(t —1) (d) (1—1) /(1 -20)
3. (a) £ x4 - %c/)
(©) N1 -x Hx (d) —4x
Exercise 11.3
1. (a) —(2x +3p)/(3x +2)
(b) (2x —g)/(x + 2y)2
(©) (1-y =2xp)(x +2xy)
32 172 3/2 112
@ -(+4x y )ix+4y x )
() (€ +ye V(e + xey; 1
O y@-y-2xiny)(x +xy)
2. (a) [2xcosy+ycos x]/[x2 siny —sinx |

. . cosy
sinysinx—e

(b) COS
Cos ycosx—xsinye

2
/3(b) £ (x - 2)N@x - x )

3+ ysinxy—4tany

2. (¢)

2 .
4xsec” y—xsinxy

(d) y/[e s21n (e) x cot (¥)]
(e ¥ /[x ¢ +y e )]

® (V +2y=1)/[x(y+1)]
3. (a) 2x (dx/dt) + 2y (dv/dr)
(b) cos x (dx/dr) — sin y (dy/dt)
-2x

(c) —2e (dx/dt)+OOSe
(d) 2xy (dx/dt)+x (dyld)

(©) e sinmy (dldi)+me  cosmy (dyldi)
(®) In(1 + tan y) (dx/dr)

Y (@yldi)

+[(x seczy)/(l + tan y)] (dy/df)
(8 (l/y)(dx/dt) (x/y Xdyldr)
(h) e (1 —e )[2(dx/dt)

o )1+ ey
(1) [(1 + cos x) cos y (dy/dt)

2
+ sin x sin y (dx/dt)]/(1 + cos x)

Exercise 11.4
1. (@) 2 In(2)
2x+1
© 2 2
(e) xsmx
® x {[cos (5)]/x — sin (x) In (x)}
(@) (1+x) {In(1+x)+x/(1+x)}
(h) —(1/x) [In () + 1]

0 [(tnn"
2. (a) 2/(1 —x)

(b) (x +3x +2x)/(1—x) 3o

© (—x +2x +3x —2x+ 1)/(1 —xg? )

(d) (1+x )(—22x fer+ 4x)/g1 -2x)

(e) —2(1 - 2x) (8 —x)/(x +2)

) -2+ \/x)(\/x + 8)/[2Vx(Vx - 1)4)]

1/2 32
(8) V[(2x) (1 - 3x) ] "
(h) 1/[2(1 +x) (3x+ 4) ]

232
@) 2x/[(1+x) (l—x) ]

(b) £ [1+ Inx]
(d) 2x"n(x)

{cos (x) In (x) + [sin (x))/x}

x][ In (In. () + 1]/

Exercise 12.1

I. (a) y=—x+1
() y=-2x/3+2/3; y=2x/3-11/3
() y==x/2+1/3
(d) y=—x/2-3/2

2. y=—x+1

4, (-2,0)&(2,-2)

6. (1,-H)&(-1,1)

3. y=-12x+3
5. (2,-2) & (-2,2)

© O.T Lee
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7. (1, 2nm), (-1, 2n + Dn)
& (0,(4n+ Dn/2) forne Z
8. (a) y=-2 () x=-2
9. (a) x=-2 (b) y=0,y=3/2
10. (a) x=+mV(-(4n+ 1)) forne 7~
(b) y=-0.7391

Exercise 12.2

1. 0.1 2. =25
3. (a) 3/20 (b) (V3)/10
4. (a) —(m\3)/45 (b) —(6\3)/n
2 -1 -
5.2cms ;0.8cms
-1 2 -1
6. 0.031 mms ;0.016 mm s
7. 0.0025 m/min
3003~ 2 2-1
8. (a) 4n cm s (b) 8 cm s
-1 3 -1
9. 0.032cms ;63.08cm s
10. 0.10 m/min 11. =1 cm/min
-1
12. 0.0019 cm/min 13. —0.031 ms
-1 -1
14. 0.052 ms 15. 0.18 ms
16. —22.86 m/min 17. 1/100 rad/sec.
-1
18. —1/250 rad/sec 19. 2.4 cms
20. 50.27 cm/min 21. 54.66 km/min
-1 -1
22. 11.17 ms 23, ~11.12 ms
24. 26.8 ms™ 25. 0.96 cm/min
Exercise 13.1
1. xsin(x)+cos(x)+C
X
2. e [sin (x) + cos (x)]/12 +C
3. 2[xln(x)—x]+C
x X 2
4. xe —e +x 2+C
2 cos (x)
5. Lt rc 6. —¢
7. —[e_x [sin (x) + cos (x)}/2+ C
2 —
8. —(x +2x+ 2)e2x+ C
9. ¢ (1+x)—x2+C
3 2
10. x 3+x[2 ln(x)— 11/4+C
X
11. (a) (\/x+1) +c (b) e2+c

(c) (\/x+l) +e +C (d) x/2+(\/x+1) +C

Exercise 13.2
1. (@) 4x+C

(c) —1/[4(2t+1)]

(d) (1—4x) +C (e) (x+1)/4+C
® —1/x—2/x —4/(3x)+C
(g)x/7+x/2+x+C

(h) t/7 3t/5+t —-t+C

(b) 3(¥x)/2+C

2. (a) (1+x)/2+c (b) (1—2x) Pnic

2
.(@x +C
6

. (©) (l—x) /3+C(d) 4(1+x) +c

(e) (2x+x)/8+C ) -(x- x) n+c
(g) (1—1/x) /4+C (h) 2(1+\/x) /5+C
-0.1

. @ 8e “ic (b) —Se e
(©) (e )/2+C (d) —(e )/3+C
(e 2e +4e +x+C
® x—-e +C

(g) (e )/2+4x 2e2 +C
(h) (e )/2+4x 4e +C

) 2 2
X —X
e -3e
. (a) +C (b) +C
16
el+x2 2
(©) +C @ & t+c
2
ex +2x 1+ ex )5
(e) +C fH ——+C
5

2x 372
(@ (1B)e —1) +C
(h) C18)(1+26)  +C

Exercise 13.3
1. @ @3)In|1+3x| +C

(b) (-4/5) In|2-5x| +C
© x2/8—x+ln|x| +C
(d) —1/(3x) + 2 In| x| +4x+(4x2)/3 +C
(e) x—2ln|x| -1x+C

2
(M x+3 Inlx| -3x-1/2x)+C
2
(@ 7/6)In|1-3x | +C
3
(h) (-12) In|2x —1| +C

2
(@) (-12)In]x - 8| +C

2
() 3 |x +3x| +C
) Inl1+x| +C

—2x
d) (-54)Inl1+2¢ | +C

2
() 3 In|1+2e" | +C

® A mle +e | +c

(g) 6lnl1+x| +C

(h) (=3/2)In]1+1x| +C

@ Inlinx | +C

() x/3+C

() 2x 3+C (d) Vx+x2+C

© O.T.Lee
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Exercise 13.4

1.

(a) (sin2x)2+C (b) cos(1 -20)+C
(c) (tan (1 +2x))2 +C

(d) (~1/n) In|cos mx| +C

(e) (=3/2) cot (41/3) + C

() (1/2) inlsin3x| +C

(g) —((N2)/m) cot (1 + ) + C

(h) (5/3n)tan (mx+ 1) +x/3+C

1) (1/(3my) cot (x) +x/3+ C

. (a) (-1/2) cos4 2x+C

(b) (-1/4) sig (d-x+C
(¢) (3/2) tan Ji +C

(d) (-1/4) cot4x +C

(e) (1 +sinx) /4;/2C

® (1-2cos 2)2) /6+C
(g) —(1 +cotx) l//4§+ C
(h) 2(1+tanx) +C
() (1 +cot 20) J6+C

. () (-1/@2n)) In|1—-sin2nx| +C

®) (=1/2) In|1+cos 2x+ )| +C
(c) (=1/2) In|cos 2x — sin 2nx | + C
(d) (1/2) In]1+tan2x| +C

(&) (-3/4) In]1+2cot2x| +C

sin x
) ~12)Inj1-2¢ | +cC

2
. (a) (1/4) sin 23x +C

(b) (~=1/3)cos 2x+C
() (1/2) sin2x + C
(d) (1/4) sin 4x + C

(e) In|sin2x| +C
® (1/2)tanx+C

. (@) (I/2)tan2x + C

(b) (1/10) tan 2x + c
(¢) (2/3)(1 +tanx) +C
(&) (-1/4)(1+2 tan x)_2 +C

(e) (m+tan2x) +C
() (=12) In|3 -2 tanx| +C

. (@) (-1/2)cot2x+C
5

(b) (-1/(57)) cot Tx ;r/zC

(©) 2/3)(1+cotx) +C
(d) (~1/3) (1 - cot x)_317; C
(e) (-2/3)(4+3cotx) +C
63] —In|2+cotx| +C

. (a) —cosx+C (b) (sin3x)/3+C

(¢) (-1/m) cos (mx + m/6) + C
(d) (~1/3) in|cos 3x| +C

8. (a) cosx+C b) (sinzx)/Z +C
(©) ~In|cos Vx| +C

Exercise 13.5
1. (a) [x— (sin 8x)/8]/2+C
(b) (1/4)[3x/2 — (1/7r) sin (27x)
+ (1/87) sin (4nx)] + C
(c) (1/2){¢ - (1/4) sin[2(1 - 20)]}+C
(d) (1/2){x + [sin (4TD€)]/(4TI:)];'C

(e) [-1/(2m)]{cos (2mt) — gcos @2rH)33+C
) (2/m){sin (nx/2) — [sin (Tr.x/32)]/3}+C
(g) (~1/m){cos () — (2/3) coss(nt)

+ (1/5) cos (7tt3)}+C

(h) (-1/m){sin (1 — mx) — (1/3) sin (1 — 7wx)}+C
(i) 2/m){cos |l - (n§/2)]

—(2/3) cos [1 - (Srr.x/2)]
2+ (1/5) cos [1-(mx/2)]+C

2. (a) [1/(2n)] sin (nt) +C
or [—14(415)] cos 2n)+C

(b) [2/(3m)] sin (13tx/2) +C
(©) [-1/(9m)] c065 (Bnx)+C

(d) [1/(3m)] sin (mx) + C
(&) (1/8) [x— (sin 20)/2] + C

@ (1/m){[sin (13tt)]/3 — [sin (nst)]/5}+C
(8 (~1/2){[cos (2x))/3 — [cos (2x)]/5}+C
(h) 1/cos (x) +cos (x) +C
(1) —=1/sin(x) —sin (x) + C
Exercise 13.6 ;
1. (@ (1+2%) 4/124 +C
(b) -1-21 B+C
2 3/2
() 4(x +1) 3+C
3/2 312
(d)4(1+x ) 9+C
2112
() (9-4x) R+C
3 172
() 4(x -8) B3+C
5/3 372
2. (a) 4(4+ \/)?/z /5—16 (4 Jg>/2x) B+C
(b) 2(1+x) /5-2(1+x) /3+C
312 52
() (<23)(1—=x) +(4/5) 7(/12 -%)
—-@MQ1-x) +C
1172 9/2
(d) (132)[2(1 +2x7)/2 /11+8(1 +52/§) /9
+12 (1 +2%) /73-/F28 (1+2) /5
+2(1+2x) /3]+C
() 1/ [@x+1)-In|l2x+1| +C
) x+2)—4din|x+2| -5(x+2)+C
32 172
(g 4(4+x) B3-16(4+x) +C
(h) 22 +Vx -2 In|2+¥x|)+C
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3. (a) smx2+C
(b) (-3 cos (x +1)2+C
(c) (tan (2x Y4+C  (d) —2ln|cosx | +C
(e) (sin (2x +iyasC
() (-cos @ +x))3+C ;
4. (@) (1+\x) 2+C (o) A+ Wlx]yB+C
(© [2x+3+n|2x+3[14+C
@ /(1 -x)+3m|1-x| - -n+C
32 12
() 2(x+9) B3-16(x+9) +C
3 2
() 2[(1 +x) /2 = 3(1 +x) /2
+3(1+Vx) - In|1+x |1+ C
(g) (-1/2) cos (x2)+C
(h) 2sin(¥x)+C (i) cos (1/x)+C
-x 2
(j) —sin(e )+3C (k) (172)tan (x )+ C
(I) —1/[3tan (x )] + C

Exercise 13.7
1. (a) —2(4 —xz)”2+ C
(b) (—1/4)(9 4t2) ?ic
(c) tan x+ C
(d) (1/15) tan 1(3x/5) +C
2. (a)—cos (52)+C
(b) (-1/2) cos 1(2x/3) +C
(c) [sin 1x+x\/(1 —x ) 172 + c
(d) -2 cos (x/2) +xN@ -x ))/4 +C
(e) —N(1 - x2) sin x+C
® —2\/(316 _) - csos—l(x/4) +C
3. (a) [tan x]/3 + [tan x]l//g +C
(®) @R3)3tanx +2] +C

Exercise 13.8
1. (@ x-2In|lx+2| +C

(b) x/2—(5/4) In|2x + 1] +C
(c) =3x/2—(1/4) In|1-2x| +C

2. @) (172) n] - Dix+ 1| +C
(b) 314) nl2x+1| + @7y inlx-31 +C
() (-13/24) In|3x+2| —(9/8) In|2 - x| +C
@) (-273) nl2x -1 + (3B Wm|x-2| +C
() x—(3/5) Infx+2| +@®/5) Inlx-3| +C
® (172) Inlx+ 1] +(1/10) in]x - 3|

—(3/5) Inlx+2| +C

3. (@) In|x/x- 1| -2/x-1)+C

®) 3inlx| + 1x=3m|x+1| +C

3. (¢) 3nlx+ 1] + U+ 1)-3m|x+2] +C
(d) x— U[20x - D]+ 54)in|x -1
—(U/4) Inlx+1]| +C
(e) 3/[4(x+2)] + (3/16)In|x — 2|
+(13/16) In]x+2] +C
@) x—28/[3(x - 3)] + (1/9)In] x|
+(53/9) In}x-3| +C
4. (@) —Inlx+1]| +1n) mly +1]+c
)] —21nlx+1| +lnlx2+x+1| +C

2
(©) In|x—1| +ln1x +x—1| +C

Exercise 14.1
1. (@) (1/2) In(3/2) (b) 5in2+3In3

(c) 4ln3-T7in2
2.(@) 1+5n2-4ln3 (b) 1+@3/2)In3-In2
() =5/2+3In2+2In3
3. (a) -1/2-3In2+2In3
(b) 1/8+(1/4)in2 - (1/4)In3
(c) 5/4+(3/4)In2+ (1/4)in3
4. (a)3in2 (b) -4 In2 (¢) 2In3-3In2

Exercise 14.2
1. (a) 2[—(2\/3)/5 + (16\/2)/15]

(b) 2[8In2 —4in3 - 1] (c) 2-1In3
(d) —26/3 + (28v2)/3
2. (a) 2 (b) 1 (c) 1/2

3. (@) w12 (b) w18 (c) /8

Exercise 14.3
1. (a) 8/3 (b) 16/3 (c) 8 (d) 173
2. (a) 948 (b) 2 (c) 2(\N2-1)
(d) e 2+ 1/e—3/2
3. (a) 1/6  (b) 92 (¢) 13/6  (d) 13/6
.(a) 2 (b) 972 (¢) 5/3-2In2

(d) 8/3-2In3+2in2

~

5. (a) W8+ (W3)2-1 (b) (V3)2+m/2
6. (1/2)[5 + In (45/64)]
7. 4 8. 8—m3 9. 9m/4
10. (a) 2.9540 (b) 9.8633
(c) 4.1045 (d) 18.6768
11. (a) 0.6321 (b) 0.8415
(c) 0.7372 (d) 1.8887
12. (a) 32/3 (b) 9/2

(c) (32V2)/3 ) (d‘? 16/5
13. (a) 3/4—2b+3b /2—b /4

(b) b4 —3b 12+ 2b+51/4

(©) b4 —3b12+2b+51/4
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Exercise 14.4

1. (a) 16w/15 (b) 52127:/15 (c) 12675/15
(d) m/105 (e) =
2. (a) 3.35 (b) 342.96 (c) 154.57
(d) 17.40 (e) 35.02 ) 2.47
(g) 9.42 (h) 3.35
3. (a) 1.57 (b) 7.33 (c) 0.71
(d) 9.07 (e) 0.52 (f) 7.87
(g) 113.10 (h) 201.06
4. (a) 64.72 (b) 37.70 (c) 724.10
(d) 3.14 (e) 40.74
Exercise 15.1
1. (a) 1.09 error 0.7%
(b) 1.069  error-1.2%
(c) 1.0807 error —-0.16%
2. (a) 9.0009 error 0.01%
(b) —68.3344 error 0.0015%
3. (a) 0.7469 (b) 0.3103
4. (a) 8.7733 (b) 1.4558
5. (a) 6.7965 (b) 1.4035

Exercise 16.1

1.

.y=6(x+1)
Cy=-2x+2n|2x+1]|+2

(@) y= ln|x2+ 1] -4

(b) y= (1)l - Dok 1y | 42

(©) y=—4ln|x+ 1 +5mlx+2] -4m2
@y==sin @) () y=tan @)

€3] y=sin_l(x)+X‘/(1 _x?-)

2
. y=-=2mx + sin (27x) 33. y=sin (x) -2

=—12cos (x)+4cos (x)+4
52 32
-10(x+1) +2

Exercise 16.2

1.

(a) y= 100¢ % () y= 506

© y=202¢ -2 (d) y=[4+ 1196 /3
(€) y=[~1+501e V5

() y= (121 +399 )

14.

(@) a=16,b=62.5
(b) m=1000, n=9 000, k=—2/125
(c) 111.98 min (d) 1000<Q < 10000

Exercise 16.3

I.

O O 0

1

11.
12.
13.

14.

(a) dP/dt=0.2P(1 — P/1000)
= 0.0002P(1000 — P)

(b) dP/dt=0.1P(1 — P/500)
=0.0002P(500 — P)

(¢) dP/dt=0.5P(1 — P/10 000)
=0.000 05P(10 000 — P)

(d) dP/dt=0.25P(1 — P/5000)
=0.000 05P(5000 - P)

—2t
. (8) P=1000/(1 +19% )

—0.05¢

(b) P=100/(1 +4e )
-0.1¢
(c) C=50/(1+9% )

—0.05¢
(d) 6=1000/1+24e )
—4¢

(@) y=200/(1+e )

—t
(b) P=100/(1+9¢ )
-0.2¢
() P=50/(1+025¢ )
-0.5¢
(d) x=100/(1+4e )

-0.05¢
. (a) P=100/(1 +3e )

(b) 21.97 years

—0.08¢
. (a) P=20000/(1+99 )

(b) 181.2 years

=10t
. (8) P=2000/(1+19% )

(b) 3 weeks

. 394 minutes to reach 49.9g/L

. 11.6 days

. 15.2 hours

. Yes, if the company is able to attract about

338 families on its opening day.
k=10.1099

k=10.06592

dP/dt=0.1P(1 — P/1000]

2t 2t
y=(4e ~-3)/(3-2¢ )

Exercise 16.4

2
@ y=ln|x| +x/2+4

2. dyldt = 0.03y with y(0) = 100 000 L
3. dP/dt = P/3 with P(0) = 100 000 (b) y=A(x—1)—1
4. 4620 981 yrs J 202
5. 194.34 yrs, 839.91 yrs (©) y=(1-de" /x)
6. 1.33 rads 7. 0.46g (d) y=4e
8. (a) 2.23% (b) 0.288% X
9. (a) k=0.06729  (b) 22.9 min 2. @) y="e + 3,
10. (a) k=0.03031  (b) 81.3 min (b) y=In[(1+x)2]
~4 : 2
11. I=2(1-e ] 12. (b) 69.31 min (©) y 2+y=1In(x+1)+32
13. (2) a=80,b=25 o
(b) m=2000,n=1500,k=1/25 (d) y=3xe —21 (e) y=x
(¢) 1.72 min (d) 500<Q <2000 ® y=i\/(1/sin x—1)
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3. (a) (i) Curve does not have an x-intercept.

Exercise 16.5
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Answers

7. (a) dy/dx =1 (b) dy/dx=-2 10. (a) 6=>5 sin (/12 ~ 1/6)
() dyldx = x2 (d) dyldx = —y2 (b) Min Temp 10 C at § pm
(© dlds=xy (B dyldx=(x— )y (€) 16 howss
11. (a) A=0.2 cos (nt/14 + 1/3)
. b) +0.14 m (c) 0.14m
E 17.1 (
@ 035 m b) 079 12, (2) x= 02 sin (n#/14 + 7/2) + 0.3
(c) 3.64m (d) 3.99m (b) (i) —m/70 0(ii) 0 (c) 046 m%
-1 -1 . .
2. (a) 3n/4s, ~14.92 ms (b) 4.81 ms 13. (@ (i) £227 Chhr (i) £2.61 C/hr
3. (a) 0.4637 + (nn/2)sec. n=0,1,2,3,... (b) 66.7% (¢) 30 C
-2 -1 14. (8) h=4+0.5 sin (nt/6)
4. (a) 8 ms b) 2 ms
5 Ea; 3 s EC; 0. 1/2 7 s (b) 4.5 hours {¢) 0.13 m/hour
‘ 1 e 15. (a) x=%6\3sin (N2 1+ )
6. (a) 8ms (b) 16/3m (c) 2ms (b) 12v3 cms™
7. (@ 0 . (b) 1sec N 16. (b) 100 cm 17. (b) +2mN105
8. (a) x=-2+2e (b) a=8e 18. (a) 2 minutes, 10 (b) 2 minutes, 10
9. (a) 21'm -2 () 0,2 19. (a) 2 seconds,10 cm (b) + 311
. (a) - $ ,2m
-1 -2
10. (a) 4 ms (b) 1.76 ms Exercise 18.1
_1 t -t
11. (a) —2n ms (b) 1/2 second 1. (a) < 1/f,é‘2,€ —te >
-1 It
12. (a) 92 ms (b) 121/30 m <-l/t,e,-2e +te > ,
13. (@) v=4(l—¢)  (b) 4ms (b) <2 c0s 21,~ 2 sin 21, 2(1 +tan 20>
14. (a) v=-5(1— 6_2’) (b) =5 ms_l <-4 szin 2t, — 4 cos 2¢, 8(1 +2tan 26>
) 2
15, @) v=@(i-¢ ) (o) gk (© <-Up, Wer ), 11y >
_ -3 -1 <=2+ 1), 2 =1) >
16. v= (5/4)\/(115 f )% 5/_41(1)1818 _1 . ( cos 2“ . ) —cos Tt
17. v=2(1+e W(1-e ) 2 ms (d) <-msinmte ,msinnte ,
’ ) i , esm t S
_ ~2gk“x TCOST ;
18. v_:t(llk)\l(l € ) 2 2 cos it 2 cos m!
<z sin me —T cosTe
19. (a) v="(16-9x) A o
(b) —4/3 SxS4/3éOSvS4 n sin we M n cosme o ,
2 2 i 2 i
20. (@) v=2(4x—x) wcos me . -m sinme >
(b) 0sx<40=<v=<4 s 2. 2+4n1=-12 3. 0<r<2n
21. (a) v=4Nx (b) x = (61 + 64) 4. 0, /2, T 3n/2,2n , 45. n=4
2
22. (a) v=-2(x +1) (b) x=~—tan (29) 6. (2+4t )/[%4(4 tin))
7. N[5+ 1) + 1134+ 1)
Exercise 17.2 4 2.4 i
1. x=10sin 2¢ 2. h=5cos (5n¢t) 8. 4+6t; 9. No solution
3. y= 4 sin (3f + 75/6) 10. TC/4, 37[/4, 57'[/4, Tr/4
4. Q= 10v2 sin (4nf — /d) 11. (a) <ag,2sint,3cost>+c; <0,2,-3>
5. (@) x=3sin(2n7)  (b) 3 cm, 1 second (b) <t+int,t-Int,In(1+H>+c;
(c) 61 cms (d) 0.05, 0.45 seconds. <1+ikn2,1-m2,in(32)>
6. (a) x=4cos (4nf) (b) O 12. (a) \/22, 2 ) (b) V5, 2.64
(c)i81r\/3cms_ 13. <t—t +1,4t+1,t 2>
7. (a) 10sin(¢+n/3) (b) 0<speed<10 14. <cos - 1+2sin >
(c) £5V3 em 15. <-1,¢,~t >
8. (a) 2ncms whenz=(2n+ 1)sec.atx=0 ig ;0— sin 7z, 1 — cos 7ut, mf — sin 7t >

® 0 cms  when f=2n sec. atx =+ 4 cm

(c) 32cm 0 s 5 Exercise 18.2
9. (a) 2n/15cms ;2m /225 cms 1. (@) <10,20,-8>  (b) <-8,18,34>
(b) () x=+V3em (i) x=-1cm (© <0,0,1+n2> (d) <0, 1, /4>
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2. (a) <7,-4,150>  (b) <-101,99,22>
(¢) <l+6n,1+2x 21>

3
(d) <8n-1,1,8r >
-1
3. (a) <0,0,2>;V10 ms

®) 0 () 3.05m
-1
4. (b) 45, 1 ms (c) <0,0,0>
5. (a) 1sec. (b) 0.54m
(c) 1 sec.

6. (a) Min of 0 cm when ¢ = 2nn sec.

-1
Max of 2¥2 cms  when £ = (2n + D) sec.
(b) t=0,7/2, w,3n/2, 27 sec.
7. By x-1=2-y=z-1

8. (a) 1433 (b) 25, <~16/3,3,-2>
3

(©) x=tB3-4t,y=t+1,z=-2t+2
9. (a) t=2sec.at<(,-4,8>

0
(b) 17.1
10. (a) t=1sec.at<2,0,0>

(b) 10.89°

Exercise 18.3
1. P:0i+2j, x2 +y2 =4 clockwise;
Q: 2i, x2 + y2 =4 anti—clockwise
R: 2i, x2 +y =4 clockwise
2. (2) In the direction of the positive y—axis;

27/3 to the positive x—axis
(b) —mj (c) 12

3. (a) 12 ) 5
(b) x +y =1/(16m ); anti-clockwise
(@1
4. a.v = Oforalls.
2
5. (@) =i (b) 4n i
(c) t=(@n+3)8sec. for n=0,1,2,3, ...
2
6. (a) J (d) (-m /4)j

(c) t=(6n+2)3sec. for n=0,1,2,3, ...
7. (a) t=nmsec. for n=0,1,2,3, ....
(b) (}21+ 1/6)n szec. for n=0,1,2,3, ...

(c) x +(y—2) =1;clockwise
2 2

8. (8) x +y =1; anti-clockwise
(d) V2i+V2j or —2i—\2j
(c) t=(@n+ Dn/8sec. for n=0,1,2,3, ...
9. No collision
10. (a) 0,7/2, &, 3n/2, 2n

(®) N(9-5 coszt)

(c) Max speed = 3 when ¢ = 7/2 at (0, 2),
and 1= 3n/2 at (0, -2);
Min speed = 2 whenr=0 & 27 at (3, 0)
and r=m at (-3, 0).

10. (d)

<

Slowing down 5L

Minimum speed\
NN
N

Slowing down

Maximum speed

// Picking up speed

Picking up speed
5 1+

11. (a) 2 (b) 0, /2, &, 3n/2, 2
(c) At(0,—-4) whent=(4n+ )r/2,-3i,
At (0,4) when t=(4n+3)n/2, 3i;
(d) At(3,0) when t=2nm, —4j;
At(-3,0) Whezn t=02n+ Iz)n, 4j ;
12. Period 2m; (x —2) /9 +(y — 4) /%5 =1
13. (a) 3m (b) 121 i
(c) t=n/2sec. for n=0,1,2,3, ...
(d) t=(@4n+3)/8sec. for n=0,1,2,3, ...
14. (a) 13v2/2 cm

) x2/25 + y2/ 144 =1, clockwise
(c) r=S5ifort=2nsec. for n=0,1,2,3, ...
r=-Sifort=(2n+1)sec. n=0,1,2,3, ..
(d) t=(6n+5)6sec. for n=0,1,2,3, ...
1

—1 —~
15. (a) Min3 cms ,Max 4 cms
(b) £3i or +4j
(c) t=nmsec. for n=0,1,2,3, ...

16. (a) (x- 1)2/9 +(y- 2)2/ 16 = 1, anti-clockwise
(b) 25 cm or V37 cm or 2V2 cm or V5 cm

17. t=0.64 sec. at (—2.4,2.4), vp = 1.8i + 3.2j,
vo=-12i-0.8j

18. When ¢ = 7t sec at (1, —2); = radians

Exercise 18.4
1. (a) 30i+ (30V3 - 9.89) ], 5.6o to the horizontal
(b) 956 (c) 10.60 sec.,318 m
2. (a) 106.07i+61.97j (b) 20.7 ,
() 1.935,528s  (d) y=x— 0.0392x
3. (a) <20¢,20¢ - 497 >

o
(b) 45
(c) <17.25,13.61 > when £ = (.86 sec.
(d) 93.7m
4. (a) <25V3,25-9.8t>;

2
<25V3¢,25¢—4.9¢ + 150>
(b) 8.64 sec.

[o]
(c) =54 to the horizontal
(d) 3743 m

2
5. (a) <50,-9.8¢>; <501 (100 —4.9¢ ) >
(b) 4.52 sec. (c) 225.88 m

0
(d) —41.52 to the horizontal
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Answers

10.
11.

13.

14.

15.

16.

-1
. (@) 13ms (b) 2.975m
(¢) 275 m
-1 [
(d) 9.52ms ,-58.31 to the horizontal
2
. () p=30t, g = (30V3)to — 4.91

(b) 7.07 sec.
(c) 24490 m up the slope of the h111

(a) y=xtan (20 )- 4 9x /[400 cos (20 )
or y=-0. 0139x +0.364x

(b) 18.89 m (¢) 19.10 m
(d) t=0sec

. (a) <8.09,-18.62> (b) 20.30 m
() 2034m @ 115
(a) 4 sec. (b) <72,17.6>
20 sec. 3 405m  12. (b) 3/10
(a) <3t —=2,2t> (b) <61,2>
(c) 0,2/3
(a) <20,10> (b) 5
(c) 106.89
(a) 48.010 above the horizontal
(b) 269 m (¢) 20 m when =2 sec.
(d) <32,0>when =4 sec.
(a) 14m (b) <14,10>
(c) 17.20m (d) 2034 m

Exercise 19.1

1.

W

10.

11.

12.

13.

— 2
(a) X ~N(100, 127/20)

(b) 0.3385 (c) 0.0312
. (@) X ~N(72, 82/50)
(b) 0.0987 (c) 0.4615
. (@) n=74 (b) 70<n <79
(@) n=25 (b) 25<n<100
.(a) 3 (b) p=3,0=3)/7
(©) 3<n<12
. (a) 18 (b) p=18,c=213

(c) 48 <n <108

. (a) Since, X ~Normal, X ~N(1.7, 0026)

(b) 0.6497 (c) 0.9728

. (a) Since, X ~ Normal,

_ 2
X ~N(875, 11.7 120)

(b) 0.3346 (c) 0.0280
(d) n=61
. (a) Since, X ~Normal, X ~N(175, 8.52062)
(b) n=90 (c) 8
(d) 1812
(a) Since, X ~ Normal, X ~N(163, 9.83872)
(b) n=67 (c) 35
(d) 162
(a) 15, (V42)/2; 15, (N42)/10
(b) 5<k<10
(a) 95, (V19)/2; 95, (V19)/12
(b) 3<k<18

(a) 0.6, (NST)Y/10  (b) 0.6, (V19)/20

14.

15.

(a) PX=x)=1/8 x=1,2,3,...,7,8
p=4.5,06=2.2913

(b) 4.5,0.3819

(a) PX=x)=1/6 x=1,2,3,4,5,6
p=3.50c=1.7078

(b) 3.5,0.4270 (c) 19<n<291

Exercise 19.2

1.

S O 00

11.

12.

13.

14.

15.

16.

— 2
2. (a) X ~N(4.5,1.27/80)
3.
4. (a) X ~N(28, 108/49)

(@) X ~N(200,35/60) (b) 0.9866
(b) 0.5439
(a) X ~N(12,4/3) (b) 1/12 (c) 0.6135

(b) (i) 1/18 (i) 04110  (c) n=82

. (a) 12min (b) X ~N(12,49/90)

() () 3/7 (ii) 0.08767  (d) 0.1660

. (a) If n <30, distribution for X is not known,

mean = 2, s.d. = (V3)/(15Vn).
If n> 30, by the CLT, X ~ Normal
mean = 2, s.d. = (V3)/(15Vn).

(b) (i) 0.6824 (ii) 0.8068
The prob. of an event occurring increases
as sample size # increases.

(c) n>134 (d) 0.9145
. (a) (i) 0.8286 (ii) 0.9584  (b) n=240
. (a) (i) 0.7558 (ii) 0.8364 (b) 127.4 min.
. (@) (i) 0.4115 (i) 0.4718 (b) 87.2 min.
. (@) X ~N(0.15,51/2000)  (b) 0.1490
(c) 29
(a) X ~N(11/2,33/200)
(b) (i) 3/10 (ii) 0.8907 (c) 89
(a) X ~N(7,91/1000)
(b) (i) 0.3556 (i) 0.4995 (c) 50

(a) PX=x)=1/8 forx=1,2,3,...,7,8

(b) X ~N(9/2,7/48) (c) 0.9048 (d) 0.7042

(@) P(X=x)=1/6 forx=1,2,3,4,5,6
Mean=7/2

(b) X ~N(7/2,5/84) (c) 0.0202 (d) n>12

(a) 5,3(V2)2 (b) 5,3/10

(c) 0.9044 (d) 0.6408

7Y 3
(a) PX=x)= [X)(%)JXJ
Mean = 21/10
(b) X ~N(21/10, 49/5000)

forx=0,1,2,3

(c) 0.1562

Exercise 19.3

1.
2.

3.
4.
5.

(a) X ~N(20, 0.32) (b) 2N(zo, o.32)
(a) X ~N(100, (7x122/10) )

(b) N(100, (732/10) )

X ~N(50, 1/2)

(@) X ~N(3,9/400) (b) N(3, 9/400)
(a) X ~N(2,1/250) (b) N(2, 1/250)
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6

7

. (a) 15, (5V3)/3 (b) X ~N(15, 5/48)
(b) N(15, 5/48)
. (a) 0, (V15)/5 (b) N(0, 1/200)

Exercise 20.1

1

Ao

W

=)

0]

. (a) 59.54,5.7844  (b) 59.54,5.7844

2
. (a) 13.5,8.7115  (b) N(13.5, 1.1246 )

X ~N(100, 9/8); N(100, 9/8)
X ~N(10, 1/5000); N(10, 1/5000)

— 2
. (a) 1, (V30)/6; X ~N(1, (¥30/60) )
(b) N, 1)

— 2
(@) 5, (5V3)/3; X ~N(5, (¥3/6) )
(b) N(0, 1); approx. N(0, 1)
. (a) 1.1, 0.9434, 0.9595
(b) 0.5708
. (a) 11.4,5.1743,5.2628
(b) 0.9367

Exercise 20.2

I.

— O O o0~

—_

12.

— 2
(a) X ~N(33.7,1.0733")
(b) (i) 33.7+£2.76 (ii) 33.7+1.88
(c) n>23

— 2
. (a) X ~N(2014,3.525)
(b) (i) 201.4+5.80 (ii) 201.4 +7.65
(c) n>48

. (@) X ~N(5.4, 0.122)
(b) (i) 54+024 (i) 5.4+0.34
(c) n>98
. (a) (i) 20.7+0.57 (ii) 20.7+1.14
(b) n>46
. (2) (i) 0.3341 (ii) 0.01606
(b) (i) 485+5.76 (ii) 485+ 6.13
(c) n>25
. (a) 09431 (b) 125+4.89 (c) n>28

. (a) 0.1030 (b) 12£1.55 (c)79.4%

. (a) 0.9605 (b) 2.5+0.089 (c) 88.6%
. (a) 183£1.18 (b) 90.4% (c) n> 60
. (a) 1.645 (b) 29.8<p<302
. (a) 9.993 < 1< 10.007

9.991 <1 <10.009
9.988 <n<10.012

(b) No cause.

(a) 999.81 < <1000.19
999.77 < n<1000.23
999.70 < u<1000.3

(b) No cause.

Exercise 20.3

L.

Lh

Significant at 10%, 5% and 1% levels.

2. Significant at 10% and 5% but not at 1%.
3.
4. (a) Significant at 5% level.

Significant at 10%, 8% and 2% levels.

(b) 15.7%

(@) 59% () () n>55 (i) n>39
C(@ 25% () () n>107 (i) n>62
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Index

Index

absolute value functions
graph of, 68
angle
between line and plane, 112
between two planes, 113
between two vectors, 85
anti-differentiation, 172
area, trapped between two curves, 199
asymptotes, 74
oblique, 82

Cartesian

equation of line, 101

equation of plane, 107

equation of circle, 115
Central Limit Theorem, 272, 276
circular motion, 261
Complex Conjugate Root Theorem, 41
complex numbers, 1

Argand diagram, 1, 7

argument, 2

Cartesian form, 1

cis form, 2

conjugate, 2

exponential form, 26

locus, 11

modulus, 2

nth roots, 21

ordered pair, 2

polar form, 2

roots, 2

trigonmetry, 23
confidence intervals for p, 294
critical region, 304

de Moivre’s Theorem, 4
differential equations, 214

%=f(x), 214

d*x 2

W =—-0 X, 245

dy

Z =ap+b,216
a Y

dy

= =ap(b-y),222
o ay(b-y)

17
i =f(x) g(»), 228

separation of variables, 216

differentiation, 152
applications, 164
exponential functions, 152
implicit, 158
logarithmic, 162
logarithmic functions, 152
parametric function, 156
rules, 152
trigonometric functions, 152

echelon form, 138
elementary row operations, 138
elliptical motion, 261

Factor Theorem, 32
functions, 45
codomain, 45
composition of, 49
domain, 45
inverse, 57
many to one, 45
one to one, 45
onto, 45
range, 45
Fundamental Theorem of Algebra, 19
Fundamental Theorem of Calculus, 173

Gaussian elimination method, 137
geometric proofs, using vectors, 129
geometry in 3D space, 133
gradient function, 164
graphs of
absolute value functions, 68
inverses, 63
rational functions, 74
reciprocals, 64

Heaviside Cover-up Method, 195

integrals
standard, 173
trigonometric, 178
integration,
change of variable, 185, 197
definite, 196
partial fractions, 191, 196
trigonometric substituion, 189
interval estimate for ., 294
isoclines, 235

level of significance, 304
logistic differential equation, 222
logistic function, 222
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Matrices,
augmented, 137
Motion in a plane
circular motion, 260
elliptical motion, 260
projectile motion, 266

Numerical integration, 208
mid point rule, 209
rectangular rules, 208
Simpson’s rule, 212
Trapezium rule, 210

partial fractions, 191

piecewise defined functions, 68, 70
poles, 74

point estimate for p, 288
polynomial division, 37

projectile motion, 266

rational functions, 74
rectilinear motion, 239
related rates, 166
Remainder Theorem, 35

sampling distribution
of sample means, 272, 289
simulations, 283
scalar product
equation of line, 105
scalar projection, 85
separation of variables, 216
shortest distance between
point and line, 118
point and plane, 119
simple harmonic motion, 246
systems of linear equations, 136
existence of solutions, 145

Gaussian elimination method, 137

infinite solutions, 146
no solution, 147
unique solution, 137, 146

vectors
acceleration, 256
angle between, 85
cross product, 94
components, 84
direction, 84
direction cosines, 85
displacement, 256
magnitude, 84
normal, 95
parallel, 85
perpendicular, 2
position, 84
projection, 85
proofs, 129
scalar product, 85
unit, 85
velocity, 256
vector equation
of line, 98
of plane, 107
of sphere, 115
scalar product, 105
vector functions, 122, 253
derivatives, 253
integrals, 253
volume of revolution, 203

zeros, 32
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Mathematics Specialist Year 11 ATAR Course Revision Series
Physics Year 11 ATAR Course Revision Series

Year 12

Chemistry Year 12 ATAR Course Revision Series

Mathematics Applications Year 12 ATAR Course Revision Series
Mathematical Methods Year 12 ATAR Course Revision Series
Mathematics Specialist Year 12 ATAR Course Revision Series
Physics Year 12 ATAR Course Revision Series

ATAR COURSE TEXTBOOKS
Mathematical Methods Year 11
Mathematics Specialist Year 11
Mathematical Methods Year 12
Mathematics Specialist Year 12

CREELMAN EXAM QUESTIONS

Year 12

Accounting & Finance
Biological Sciences
Chemistry

Economics

Geography

Human Biological Sciences
Mathematics
Mathematics
Mathematics Specialist
Physics

Politics and Law
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ATAR HELP

If you have found this Guide useful and would like more help please contact
ACADEMIC TASK FORCE for information about ACADEMIC GROUP Programes.

e ATAR Course Revision programs in January, April,
July and October Holidays.

Special Study Skills and Essay Writing Courses .

Weekend small group classes for ongoing help
throughout the year.

e ATAR Master Classes for teaching extension.

Individual tuition in your home.

Ensure your ATAR Success through ACADEMIC TASK FORCE programs.
o0
= Enrol in our courses at www.academictaskforce.com.au

[m] -

Want to be kept up to date about upcoming courses?

Email learn@academictaskforce.com.au and tell us your name and address and we

will add you to our loyalty member's mailout where you can receive notice of Early

Bird enrolment discounts and all our upcoming courses.

ﬁ Follow us on Facebook for exam and study tips

Visit www.academictaskforce.com.au for insider tips from our specialist ATAR

\§

course exam markers and teachers in our video blogs series.

Contact Us: ACADEMIC TASK FORCE

PO Box 627, APPLECROSS WA 6953 %
Phone: (08) 9314 9500

Email: learn@academictaskforce.com.au




